Skip to main content
Log in

Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Development of an electrochemical DNA biosensor for the direct detection and discrimination of double-stranded oligonucleotide (dsDNA) corresponding to hepatitis C virus genotype 3a, without its denaturation, using a gold electrode is described. The electrochemical DNA sensor relies on the modification of the gold electrode with 6-mercapto-1-hexanol and a self-assembled monolayer of 14-mer peptide nucleic acid probe, related to the hepatitis C virus genotype 3a core/E1 region. The increase of differential pulse voltammetric responses of methylene blue, upon hybridization of the self-assembled probe with the target ds-DNA to form a triplex is the principle behind the detection and discrimination. Some hybridization experiments with non-complementary oligonucleotides were carried out to assess whether the developed DNA sensor responds selectively to the ds-DNA target. Diagnostic performance of the biosensor is described and the detection limit was found to be 1.8 × 10−12 M in phosphate buffer solution, pH 7.0. The relative standard deviation of measurements of 100 pM of target ds-DNA performed with three independent probe-modified electrodes was 3.1%, indicating a remarkable reproducibility of the detection method.

Development of an electrochemical DNA biosensor for the direct detection and discrimination of double-stranded oligonucleotide (dsDNA) corresponding to hepatitis C virus genotype 3a without its denaturation using a gold electrode is described. The Electrochemical DNA sensor relies on the modification of gold electrode with 6-mercapto-1-hexanol and self-assembled monolayer of 14-mer peptide nucleic acid probe, related to the hepatitis C virus genotype 3a core/E1 region. The increase of differential pulse voltammetric responses of methylene blue, upon hybridization of the self-assembled probe with the target ds-DNA to form a triplex is the principal of the detection and discrimination. Some hybridization experiments with non-complementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the ds-DNA target. Diagnostic performance of the biosensor is described and the detection limit was found to be 1.84 × 10−12 M, in phosphate buffer solution, pH 7.0. The relative standard deviation over three independently probe modified electrodes measured at 100 pM of target ds-DNA was 3.1 % indicating a remarkable reproducibility of the detection method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  Google Scholar 

  2. Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA). oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc 114:1895–1898

    Article  CAS  Google Scholar 

  3. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  Google Scholar 

  4. Mateo-Martí E, Briones C, Pradier CM, Martín-Gago JA (2007) A DNA biosensor based on peptide nucleic acids on gold surfaces. Biosens Bioelectron 22:1926–1932

    Article  Google Scholar 

  5. Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchard O, Sönnichsen SH, Nielsen PE (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313

    Article  CAS  Google Scholar 

  6. Nielsen PE, Egholm M (1999) Peptide nucleic acids: protocols and applications. Horizon Bioscience, Wymondham, UK

    Google Scholar 

  7. Wang J, Nielsen PE, Jiang M, Cai X, Fernandes JR, Grant DH, Ozsoz M, Beglieter A, Mowat M (1997) Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance. Anal Chem 69:5200–5202

    Article  CAS  Google Scholar 

  8. Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77:6976–6984

    Article  CAS  Google Scholar 

  9. Liu J, Tiefenauer L, Tian S, Nielsen PE, Knoll W (2006) PNA-DNA hybridization study using labeled streptavidin by voltammetry and surface plasmon fluorescence spectroscopy. Anal Chem 78:470–476

    Article  CAS  Google Scholar 

  10. Uno T, Tabata H, Kawi T (2007) Peptide nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization. Anal Chem 79:52–59

    Article  CAS  Google Scholar 

  11. Ohtake T (2006) Development of high sensitive DNA sensor by using probe PNA with IS-FET electrode. Electrochem 74:114–117

    CAS  Google Scholar 

  12. Wang J, Palecek E, Nielsen PE, Rivas G, Cai X, Shiraishi H, Dontha N, Luo D, Farias PAM (1996) Peptide nucleic acid probes for sequence-specific DNA biosensors. J Am Chem Soc 118:7667–7670

    Article  CAS  Google Scholar 

  13. Aoki H, Buhlmann P, Umezawa Y (2000) Electrochemical detection of a one-base mismatch in an oligonucleotide using ion-channel sensors with self-assembled PNA monolayers. Electroanalysis 12:1272–1276

    Article  CAS  Google Scholar 

  14. Sugawara M, Hirano A, Buhlmann P, Umezawa Y (2002) Design and application of ion-channel sensors based on biological and artificial receptors. Bull Chem Soc Jpn 75:187–201

    Article  CAS  Google Scholar 

  15. Kerman K, Ozkan D, Kara P, Erdem A, Meric B, Nielsen PE, Ozsoz M (2003) Label-free bioelectronic detection of point mutation by using peptide nucleic acid probes. Electroanalysis 15:667–670

    Article  CAS  Google Scholar 

  16. Umezawa Y, Aoki H (2004) Ion channel sensors based on artificial receptors. Anal Chem 76:320A–326A

    CAS  Google Scholar 

  17. Kerman K, Vestergaard M, Nagatani N, Takamura Y, Tamiya E (2006) Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: electrostatic interactions with a metal cation. Anal Chem 78:2182–2189

    Article  CAS  Google Scholar 

  18. Aoki H, Tao H (2007) Label- and marker-free gene detection based on hybridization-induced conformational flexibility changes in a ferrocene–PNA conjugate probe. Analyst 132:784–791

    Article  CAS  Google Scholar 

  19. Bard AJ, Faulkner LR (2001) In: Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  20. Palecek E, Fojta M (2001) Detecting DNA hybridization and damage. Anal Chem 73:74A–83A

    CAS  Google Scholar 

  21. Wang J, Rivas G, Cai X, Chicharro M, Parrado C, Dontha N, Begleiter A, Mowat M, Palecek E, Nielsen PE (1997) Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor. Anal Chim Acta 344:111–118

    Article  CAS  Google Scholar 

  22. Tomschik M, Jelen F, Havran L, Trnkova L, Nielsen PE, Palecek E (1999) Reduction and oxidation of peptide nucleic acid and DNA at mercury and carbon electrodes. J Electroanal Chem 476:71–80

    Article  CAS  Google Scholar 

  23. Wittung-Stafshede P, Rodahl M, Kasemo B, Nielsen PE, Norden B (2000) Detection of point mutations in DNA by PNA-based quartz-crystal biosensor. Coll Surf A 174:269–273

    Article  CAS  Google Scholar 

  24. Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469:63–71

    Article  CAS  Google Scholar 

  25. De-los-Santos-Allvarez P, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2004) Current strategies for electrochemical detection of DNA with solid electrodes. Anal Bioanal Chem 378:104–118

    Article  Google Scholar 

  26. Kerman K, Kobayashi M, Tamiya E (2004) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15:R1–R11

    Article  CAS  Google Scholar 

  27. Kuhn H, Demidov VV, Coull JM, Fiandaca MJ, Gildea BD, Frank-Kamenetskii MD (2002) Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets. J Am Chem Soc 124:1097–1103

    Article  CAS  Google Scholar 

  28. Baker ES, Hong JW, Gaylord BS, Bazan GC, Bowerset MT (2006) PNA/dsDNA complexes: site specific binding and dsDNA biosensor applications. J Am Chem Soc 128:8484–8492

    Article  CAS  Google Scholar 

  29. Pournaghi-Azar MH, Hejazi MS, Alipour E (2006) Developing an electrochemical deoxyribonucleic acid (DNA) biosensor on the basis of human interleukine-2 gene using an electroactive label. Anal Chim Acta 570:144–150

    Article  CAS  Google Scholar 

  30. Sabzi RE, Sehatnia B, Pournaghi-Azar MH, Hejazi MS (2008) Electrochemical detection of human papilloma virus (HPV) target DNA using MB on pencil graphite electrode. J Iran Chem Soc 5:476–483

    CAS  Google Scholar 

  31. Hejazi MS, Alipour E, Pournaghi-Azar MH (2007) Immobilization and voltammetric detection of human interleukine-2 gene on the pencil graphite electrode. Talanta 71:1734–1740

    Article  CAS  Google Scholar 

  32. Pournaghi-Azar MH, Hejazi MS, Alipour E (2007) Detection of human interleukine-2 gene using a label-free electrochemical DNA hybridization biosensor on the basis of a non-inosine substituted probe. Electroanalysis 19:466–472

    Article  CAS  Google Scholar 

  33. Hejazi MS, Pournaghi-Azar MH, Alipour E, Karimi F (2008) Construction, electrochemically biosensing and discrimination of recombinant plasmid (pEThIL-2) on the basis of interleukine-2 DNA insert. Biosens Bioelectron 23:1588–1594

    Article  CAS  Google Scholar 

  34. Pournaghi-Azar MH, Alipour E, Zununi S, Foruhandeh H, Hejazi MS (2008) Direct and rapid electrochemical biosensing of the human interleukin-2 DNA in unpurified polymerase chain reaction (PCR)-amplified real samples. Biosens Bioelectron 24:524–530

    Article  CAS  Google Scholar 

  35. Pournaghi-Azar MH, Ahour F, Hejazi MS (2009) Differential pulse voltammetric detection of hepatitis C virus 1a oligonucleotide chain by a label-free electrochemical DNA hybridization biosensor using consensus sequence of hepatitis C virus 1a probe on the pencil graphite electrode. Electroanalysis 21:1822–1828

    Article  CAS  Google Scholar 

  36. Hejazi MS, Pournaghi-Azar MH, Ahour F (2009) Electrochemical detection of short sequences of hepatitis C 3a virus using a peptide nucleic acid-assembled gold electrode. Anal Biochem 399:118–124

    Article  Google Scholar 

  37. Hejazi MS, Raoof J-B, Ojani R, Golabi SM, Hamidi Asl E (2010) Brilliant cresyl blue as electroactive indicator in electrochemical DNA oligonucleotide sensors. Bioelectrochem 78:141–146

    Article  CAS  Google Scholar 

  38. Yuan M, Zhan S, Zhou X, Liu Y, Feng L, Lin Y, Zhang Z, Hu J (2008) A method for removing self-assembled monolayers on gold. Langmuir 24:8707–8710

    Article  CAS  Google Scholar 

  39. Herne TM, Tarlov MJ (1997) Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 119:8916–8920

    Article  CAS  Google Scholar 

  40. Peterson AW, Heaton RJ, Georgiadis RM (2001) The effect of surface probe density on DNA hybridization. Nucleic Acids Res 29:5163–5168

    Article  CAS  Google Scholar 

  41. Steel AB, Levicky RL, Herne TM, Tarlov M (2000) Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys J 79:975–981

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. H. Pournaghi-Azar or M. S. Hejazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pournaghi-Azar, M.H., Ahour, F. & Hejazi, M.S. Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization. Anal Bioanal Chem 397, 3581–3587 (2010). https://doi.org/10.1007/s00216-010-3875-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3875-5

Keywords

Navigation