Skip to main content
Log in

Determination of selenomethionine, selenocysteine, and inorganic selenium in eggs by HPLC–inductively coupled plasma mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method for the simultaneous determination of selenomethionine (SeMet), selenocysteine (SeCys), and selenite [Se(IV)] in chicken eggs was developed. A sample preparation protocol including defatting, protein denaturation, and carbamidomethylation was optimized in order to achieve complete protein digestion and to avoid SeCys losses. Quantification was carried out by reversed-phase HPLC–inductively coupled plasma mass spectrometry (ICP MS) after quantitative isolation of the selenium-containing fraction by size-exclusion liquid chromatography. The detection limits were 0.06, 0.003, and 0.01 µg g−1 (dry weight) for SeCys, Se(IV) and SeMet, respectively, and the precision was 5–10%. The end products of carbamidomethylation of the different selenium species were identified for the first time by electrospray QTOF MS after custom-designed 2D HPLC purification. Differences in selenium speciation in egg yolk and white were highlighted, the yolk containing more SeCys and the white more SeMet. An insight into selenium bioaccessibility in eggs was obtained by digestion with simulated gastric and gastrointestinal juices and size-exclusion HPLC-ICP MS.

Selenium speciation in chicken eggs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yammanoti T, Juneja LR, Hatta H, Kim M (1997) Hen eggs: their basic and applied science. CRC, Boca Raton

    Google Scholar 

  2. Papazyan TT, Fisinin VI, Surai PF (2008) In: Surai PF, Taylor-Pickard JA (eds) Current advances in selenium research and applications. Wageningen, Wageningen

    Google Scholar 

  3. Nisianakis P, Giannenas I, Gavriil A, Kontopidis G, Kyriazakis I (2009) Biol Trace Elem Res 128:62–71

    Article  CAS  Google Scholar 

  4. Sheng Z, Jiakui L, Haijian L, Bin L, Xiaolong W (2002) Res Vete Sci 72:7–9

    Article  Google Scholar 

  5. Sugini H, Nitoda T, Juneja LR (1997) In: Yammanoti T, Juneja LR, Hatta H, Kim M (eds) Hen eggs: their basic and applied science. CRC, Boca Raton

    Google Scholar 

  6. Zhao S, Li J, Liu H, Liu B, Wang X (2002) Res Vet Sci 72:7–9

    CAS  Google Scholar 

  7. Arpasova H, Petrovic V, Mellen M, Kacaniova M, Cobanova K, Leng L (2009) J Anim Feed Sci 18:90–100

    Google Scholar 

  8. Boruta A, Swierczewska E, Roszkowski T (2007) Med Wet 63:238–241

    Google Scholar 

  9. Chantiratikul A, Orawan C, Chantiratikul P (2008) Asian-Aust J Anim Sci 21:1048–1052

    CAS  Google Scholar 

  10. Li J, Wang X (2004) J Trace Elem Med Biol 18:65–68

    Article  CAS  Google Scholar 

  11. Mohiti-Asli M, Shariatmadari F, Lotfollahian H, Mazuji MT (2008) Can J Anim Sci 88:475–483

    CAS  Google Scholar 

  12. Pan C, Huang K, Zhao Y, Qin S, Chen F, Hu Q (2007) J Agric Food Chem 55:1027–1032

    Article  CAS  Google Scholar 

  13. Pappas AC, McDevitt RM, Surai PF, Acamovic T, Sparks NHC (2004) Br Poult Sci 45

  14. Payne RL, Lavergne TK, Southern LL (2005) Poult Sci 84:232–237

    CAS  Google Scholar 

  15. Skrivan M, Simane J, Dlouha G, Doucha J (2006) Czech J Anim Sci 51:163–167

    CAS  Google Scholar 

  16. Surai PF (2002) Worlds Poult Sci J 58:431–450

    Article  Google Scholar 

  17. Utterback PL, Parsons CM, Yoon I, Butler J (2005) Poult Sci 84:1900–1901

    CAS  Google Scholar 

  18. Pappas AC, Karadas F, Surai PF, Speake BK (2005) Comp Biochem Physiol B 142:465

    Google Scholar 

  19. Surai PF (2000) Feed Compounder 20:16

    Google Scholar 

  20. Rayman MP, Infante HG, Sargent M (2008) Br J Nutr 100:238–253

    CAS  Google Scholar 

  21. Jakubowski N, Stuewer D, Klockow D, Thomas C, Emons H (2001) J Anal Atom Spectrom 16:135–139

    Article  CAS  Google Scholar 

  22. Kohrle J, Brigelius-Flohe R, Bock A, Gartner R, Meyer O, Flohe L (2000) Biol Chem 381:849–864

    Article  CAS  Google Scholar 

  23. Ruiz Encinar J, Schaumloeffel D, Ogra Y, Lobinski R (2004) Anal Chem 76:6635–6642

    Article  CAS  Google Scholar 

  24. Bierla K, Vacchina V, Szpunar J, Bertin G, Lobinski R (2008) J Anal Atom Spectrom 23:508–513

    Article  CAS  Google Scholar 

  25. Bierla K, Szpunar J, Lobinski R (2008) Anal Chim Acta 624:195–202

    Article  CAS  Google Scholar 

  26. Bierla K, Dernovics M, Vacchina V, Szpunar J, Bertin G, Lobinski R (2008) Anal Bioanal Chem 390:1789–1798

    Article  CAS  Google Scholar 

  27. Dernovics M, Lobinski R (2008) J Anal Atom Spectrom 23:744–751

    Article  CAS  Google Scholar 

  28. Palacios O, Ruiz Encinar J, Bertin G, Lobinski R (2005) Anal Bioanal Chem 383:516–522

    Article  CAS  Google Scholar 

  29. Diaz Huerta V, Fernandez Sanchez ML, Sanz-Medel A (2004) J Anal Atom Spectrom 19:644–648

    Article  CAS  Google Scholar 

  30. Tinggi U, Reilly C, Patterson C (1992) J Food Comp Anal 5:269

    Article  CAS  Google Scholar 

  31. Pappa EC, Pappas AC, Surai PF (2006) Sci Total Environ 372:100

    Article  CAS  Google Scholar 

  32. Smrkolj P, Pograjc L, Hlastan-Ribi C, Stibilj V (2005) Food Chem 90:691

    Article  CAS  Google Scholar 

  33. Goncalves Ventura M, do Carmo Freitas M, Pacheco A, van Meerten T, Wolterbeek HT (2007) Eur Food Res Technol 224:395

    Article  Google Scholar 

  34. Sirichakwal PP, Puwastien P, Polngam J, Kongkachuichai R (2005) J Food Compos Anal 18:47

    Article  CAS  Google Scholar 

  35. Kadrabova J, Madaric A, Ginter E (1997) Food Chem 58:29

    Article  CAS  Google Scholar 

  36. Klapec T, Mandic ML, Grgic J, Primorac L, Perl A, Krstanovic V (2004) Food Chem 85:445

    Article  CAS  Google Scholar 

  37. Bourre JM, Galea F (2006) J Nutr Health Aging 10:371–376

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gérard Bertin Alltech, France, for facilitating the acquisition of the authentic control and supplemented eggs and Prof. Dr. Ryszard Lobinski, CNRS, Pau, for the critical reading of the manuscript. This work was supported by the EU in the framework of European Social Fund through the Warsaw University of Technology Development Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Szpunar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipiec, E., Siara, G., Bierla, K. et al. Determination of selenomethionine, selenocysteine, and inorganic selenium in eggs by HPLC–inductively coupled plasma mass spectrometry. Anal Bioanal Chem 397, 731–741 (2010). https://doi.org/10.1007/s00216-010-3544-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3544-8

Keywords

Navigation