Skip to main content
Log in

Selective enrichment of phosphatidylcholines from food and biological matrices using metal oxides as solid-phase extraction materials prior to analysis by HPLC–ESI-MS/MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A zirconia (ZrO2)-modified solid-phase extraction sorbent has been evaluated for selective extraction of phosphatidylcholines from biological samples, followed by analysis of the isolated solutes by reversed-phase liquid chromatography–electrospray ionization–tandem mass spectrometry. The clean-up process was optimized using seven standard phosphatidylcholines including two lyso derivatives. Different acidic conditions were tested for the bonding and washing steps; for elution, various aqueous or methanolic bases were studied. Experiments were conducted hydrodynamically using extraction cartridges, and statically in batch mode; the performance of the sorbent was significantly better when used in the flow-through mode. The developed clean-up procedure was used to selectively enrich phosphatidylcholines from whole milk, human plasma, and mouse plasma, to show the wide applicability of the method. For the preceding extraction of total lipids from the matrix, different solvent mixtures (methanol–chloroform, methanol–methyl tert-butyl ether, and ethanol–ethyl acetate) were compared. Accuracy and reproducibility of the proposed sample-preparation procedure were evaluated. Matrix effects possibly affecting mass spectrometric analysis were studied before and after the solid-phase extraction. They were found to be significant for several analytes, stressing the importance of a sample clean-up procedure. Under identical experimental conditions, recovery of bound phosphatidylcholines by zirconia was superior to that by other metal oxides, for example titania (TiO2) and stannia (SnO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

16:0 lysoPC:

1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine

18:0 lysoPC:

1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine

AcOH:

Acetic acid

DAPC:

1,2-Diarachidonoyl-sn-glycero-3-phosphocholine

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

ESI:

Electrospray ionization

EtOAc:

Acetic acid ethyl ester

EtOH:

Ethanol

FA:

Formic acid

GPL:

Glycerophospholipid

HPLC:

High-performance liquid chromatography

iPrOH:

2-Propanol

LC:

Liquid chromatography

MeOH:

Methanol

MS:

Mass spectrometry

MTBE:

Methyl tert-butyl ether

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PL:

Phosphoplipid

PLPC:

1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

SPE:

Solid-phase extraction

SRM:

Selected reaction monitoring

TFA:

Trifluoroacetic acid

QqQ:

Triple quadrupole

References

  1. Peterson BL, Cummings BS (2006) Biomed Chromatogr 20:227–243

    Article  CAS  Google Scholar 

  2. Pulfer M, Murphy RC (2003) Mass Spectrom Rev 22:332–364

    Article  CAS  Google Scholar 

  3. Lessig J, Fuchs B (2009) Curr Med Chem 16:2021–2041

    Article  CAS  Google Scholar 

  4. Schneider M (2001) Eur J Lipid Sci Technol 103:98–101

    Article  CAS  Google Scholar 

  5. van Nieuwenhuyzen W, Tomas MC (2008) Eur J Lipid Sci Technol 110:472–486

    Article  CAS  Google Scholar 

  6. Folch J, Lees M, Sloane SGH (1957) J Biol Chem 226:497–509

    CAS  Google Scholar 

  7. Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  8. Perez-Palacios T, Ruiz J, Antequera T (2007) Food Chem 102:875–879

    Article  CAS  Google Scholar 

  9. Siriamornpun S, Yang L, Kubola J, Li D (2008) J Food Lipids 15:164–175

    Article  CAS  Google Scholar 

  10. Lopez C, Briard-Bion V, Menard O, Rousseau F, Pradel P, Besle J-M (2008) J Agric Food Chem 56:5226–5236

    Article  CAS  Google Scholar 

  11. Parcerisa J, Codony R, Boatella J, Rafecas M (1999) J Agric Food Chem 47:1410–1415

    Article  CAS  Google Scholar 

  12. Domingues MRM, Reis A, Domingues P (2008) Chem Phys Lipids 156:1–12

    Article  CAS  Google Scholar 

  13. Larsen A, Hvattum E (2005) Mod Methods Lipid Anal Liq Chromatogr/Mass Spectrom Relat Tech 19–60

  14. Schiller J, Suess R, Fuchs B, Mueller M, Zschoernig O, Arnold K (2006) Future Lipidol 1:115–125

    Article  CAS  Google Scholar 

  15. Avalli A, Contarini G (2005) J Chromatogr A 1071:185–190

    Article  CAS  Google Scholar 

  16. Chua SC, Tan CP, Lai OM, Long K, Mirhosseini H, Baharin BS (2008) Eur J Lipid Sci Technol 110:334–340

    Article  CAS  Google Scholar 

  17. Han G, Ye M, Zou H (2008) Analyst 133:1128–1138

    Article  CAS  Google Scholar 

  18. Blacken GR, Volny M, Diener M, Jackson KE, Ranjitkar P, Maly DJ, Turecek F (2009) J Am Soc Mass Spectrom 20:915–926

    Article  CAS  Google Scholar 

  19. Kweon HK, Hkansson K (2006) Anal Chem 78:1743–1749

    Article  CAS  Google Scholar 

  20. Yan J, Li X, Cheng S, Ke Y, Liang X (2009) Chem Commun 2929–2931

  21. Qi D, Lu J, Deng C, Zhang X (2009) J Chromatogr A 1216:5533–5539

    Article  CAS  Google Scholar 

  22. Ficarro SB, Parikh JR, Blank NC, Marto JA (2008) Anal Chem 80:4606–4613

    Article  CAS  Google Scholar 

  23. Leitner A, Sturm M, Smatt J-H, Jaern M, Linden M, Mechtler K, Lindner W (2009) Anal Chim Acta 638:51–57

    Article  CAS  Google Scholar 

  24. Li Y, Lin H, Deng C, Yang P, Zhang X (2008) Proteomics 8:238–249

    Article  CAS  Google Scholar 

  25. Rivera JG, Choi YS, Vujcic S, Wood TD, Colon LA (2009) Analyst 134:31–33

    Article  CAS  Google Scholar 

  26. Li Y, Qi D, Deng C, Yang P, Zhang X (2008) J Proteome Res 7:1767–1777

    Article  CAS  Google Scholar 

  27. Pucci V, Di Palma S, Alfieri A, Bonelli F, Monteagudo E (2009) J Pharm Biomed Anal 50:867–871

    Article  CAS  Google Scholar 

  28. Ikeguchi Y, Nakamura H (2000) Anal Sci 16:541–543

    Article  CAS  Google Scholar 

  29. Calvano CD, Jensen ON, Zambonin CG (2009) Anal Bioanal Chem 394:1453–1461

    Article  CAS  Google Scholar 

  30. Yang K, Zhao Z, Gross RW, Han X (2009) J Chromatogr B 877:2924–2936

    Article  CAS  Google Scholar 

  31. Smatt J-H, Schuewer N, Jaern M, Lindner W, Linden M (2008) Micropor Mesopor Mater 112:308–318

    Article  CAS  Google Scholar 

  32. Ardrey RE (2003) In: Ando DJ (ed) The effect of mobile phase additives and cone voltage. Wiley, Chichester, UK

    Google Scholar 

  33. Ardrey RE (2003) In: Ando DJ (ed) Structural information from electrospray ionization. Wiley, Chichester, UK

    Google Scholar 

  34. EURACHEM Guide (1998) A laboratory guide to method validation and related topics. LGC Ltd, Teddington, UK

  35. Glisic SB, Skala DU (2009) Chem Ind Chem Eng Q 15:159–168

    Article  CAS  Google Scholar 

  36. Ki I, Shibahara A, Yamamoto K, Nakayama T (1996) Lipids 31:535–539

    Article  Google Scholar 

  37. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJD (2005) Mol Cell Proteomics 4:873–886

    Article  CAS  Google Scholar 

  38. Lin J-H, Liu L-Y, Yang M-H, Lee M-H (2004) J Agric Food Chem 52:4984–4986

    Article  CAS  Google Scholar 

  39. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) J Lipid Res 49:1137–1146

    Article  CAS  Google Scholar 

  40. Mei H (2005) In: Korfmacher WA (ed) Matrix effects: causes and solutions. CRC Press, Boca Raton, USA

    Google Scholar 

  41. Jensen RG (2002) J Dairy Sci 85:295–350

    Article  CAS  Google Scholar 

  42. Sanchez-Juanes F, Alonso JM, Zancada L, Hueso P (2009) Int Dairy J 19:273–278

    Article  CAS  Google Scholar 

  43. Rombaut R, Camp JV, Dewettinck K (2005) J Dairy Sci 88:482–488

    Article  CAS  Google Scholar 

  44. Rombaut R, Van Camp J, Dewettinck K (2006) Int J Food Sci Technol 41:435–443

    Article  CAS  Google Scholar 

  45. Lilbaek HM, Fatum TM, Ipsen R, Sorensen NK (2007) J Agric Food Chem 55:2970–2978

    Article  CAS  Google Scholar 

  46. Raffelt K, Moka D, Sullentrop F, Dietlein M, Hahn J, Schicha H (2000) NMR Biomed 13:8–13

    Article  CAS  Google Scholar 

  47. Heimerl S, Liebisch G, Le Lay S, Boettcher A, Wiesner P, Lindtner S, Kurzchalia TV, Simons K, Schmitz G (2008) Biochem Biophys Res Commun 367:826–833

    Article  CAS  Google Scholar 

  48. Li Z, Basterr MJ, Hailemariam TK, Hojjati MR, Lu S, Liu J, Liu R, Zhou H, Jiang X-C (2005) Biochim Biophys Acta/Mol Cell Biol Lipids 1735:130–134

    CAS  Google Scholar 

  49. Takatera A, Takeuchi A, Saiki K, Morisawa T, Yokoyama N, Matsuo M (2006) J Chromatogr B: Anal Technol Biomed Life Sci 838:31–36

    Article  CAS  Google Scholar 

Download references

Acknowledgment

A. Gonzálvez acknowledges financial support in the form of a F.P.U. grant (ref. AP-2007-04566) provided by the Ministerio de Ciencia e Innovación of Spain. The authors thank Dr Gerald Stübiger, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, for providing the plasma samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Lindner.

Additional information

Dedicated to Dipl.-Ing. Dr Dr h.c. Professor Manfred Grasserbauer on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzálvez, A., Preinerstorfer, B. & Lindner, W. Selective enrichment of phosphatidylcholines from food and biological matrices using metal oxides as solid-phase extraction materials prior to analysis by HPLC–ESI-MS/MS. Anal Bioanal Chem 396, 2965–2975 (2010). https://doi.org/10.1007/s00216-010-3527-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3527-9

Keywords

Navigation