Skip to main content

Recent Progress on the Chemical Reactions of Single-Walled Carbon Nanotubes

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Single-walled carbon nanotubes (SWNTs) have received much attention because of their excellent mechanical and electronic properties. The structure of an SWNT, a tubular graphene sheet, is defined by the diameter and orientation of the carbon lattice. The electronic properties of SWNTs are strictly determined by their structure. The chemical functionalization of SWNTs has been widely studied to reveal the reactivity and property of their unique and new curved-π-electron system. Addition of new functionalities to SWNTs aids in enhancing their solubility in organic solvents.

In the first part of this chapter, the three main SWNT characterization methods—Vis-NIR absorption spectroscopy, Raman spectroscopy, and thermogravimetry—are presented. In the second subchapter, we focus on the reductive alkylation reactions of SWNTs. Methods for controlling the degree of functionalization by substituent effects in the two-step reductive alkylation are discussed in detail. Additionally, a method to estimate the ratio of two functional groups on the SWNT sidewall is described. The third subchapter is devoted to the photochemical reactions of SWNTs with organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  3. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  CAS  Google Scholar 

  4. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  5. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  CAS  Google Scholar 

  6. Akasaka T, Wudl F, Nagase S (2010) Chemistry of nanocarbons. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  7. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  CAS  Google Scholar 

  8. Hamada N, S-i S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581

    Article  CAS  Google Scholar 

  9. Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68:631–634

    Article  CAS  Google Scholar 

  10. Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J-Q, Xu Z, Peng F, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524

    Article  CAS  Google Scholar 

  11. Sanchez-Valencia JR, Dienel T, Gröning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Rasel R (2014) Controlled synthesis of single-chirality carbon nanotubes. Nature 512:61–64

    Article  CAS  Google Scholar 

  12. Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 193–194

    Google Scholar 

  13. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  14. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397

    Article  CAS  Google Scholar 

  15. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    Article  CAS  Google Scholar 

  16. Hamon MA, Itkis ME, Niyogi S, Alvaraez T, Kuper C, Menon M, Haddon RC (2001) Effect of rehybridization on the electronic structure of single-walled carbon nanotubes. J Am Chem Soc 123:11292–11293

    Article  CAS  Google Scholar 

  17. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275:187–190

    Article  CAS  Google Scholar 

  18. Reich S, Thomsen C (2002) Electronic band structure of isolated and bundled carbon nanotubes. Phys Rev B 65:155411

    Article  Google Scholar 

  19. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558

    Article  CAS  Google Scholar 

  20. Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Margrave JL, Smalley RE, Hauge RH (2001) Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B 105:8297–8301

    Article  CAS  Google Scholar 

  21. Saito T, Ohmori S, Shukla B, Yumura M, Lijima S (2009) A novel method for characterizing the diameter of single-wall carbon nanotubes by optical absorption spectra. Appl Phys Express 2:095006

    Article  Google Scholar 

  22. Hu H, Zhao B, Hamon MA, Kamaras K, Itkis ME, Haddon RC (2003) Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J Am Chem Soc 125:14893–14900

    Article  CAS  Google Scholar 

  23. Strano MS, Huffman CB, Moore VC, O’Connell MJ, Haroz EH, Hubbard J, Miller M, Rialon K, Kittrell C, Ramesh S, Hauge RH, Smalley RE (2003) Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J Phys Chem B 107:6979–6985

    Article  CAS  Google Scholar 

  24. Kazaoui S, Minami N, Kataura H, Achiba Y (2001) Absorption spectroscopy of single-wall carbon nanotubes: effects of chemical and electrochemical doping. Synth Met 121:1201–1202

    Article  CAS  Google Scholar 

  25. Jacquemin R, Kazaoui S, Yu D, Hasanien A, Minami N, Kataura H, Achiba Y (2000) Doping mechanism in single-wall carbon nanotubes studied by optical absorption. Synth Met 115:283–287

    Article  CAS  Google Scholar 

  26. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366

    Article  CAS  Google Scholar 

  27. Kukovecz A, Kramberger C, Georgakilas V, Prato M, Kuzmany H (2002) A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. Eur Phys J B 28:223–230

    Article  CAS  Google Scholar 

  28. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382

    Article  CAS  Google Scholar 

  29. Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu Z, Hauge RH, Billups WE (2004) A convenient route to functionalized carbon nanotubes. Nano Lett 4:1257–1260

    Article  CAS  Google Scholar 

  30. García-Gallastegui A, Obieta I, Bustero I, Imbuluzqueta G, Arbiol J, Miranda JI, Aizpurua JM (2008) Reductive functionalization of single-walled carbon nanotubes with lithium metal catalyzed by electron carrier additives. Chem Mater 20:4433–4438

    Article  Google Scholar 

  31. Wunderlich D, Hauke F, Hirsch A (2008) Preferred functionalization of metallic and small-diameter single walled carbon nanotubes via reductive alkylation. J Mater Chem 18:1493–1497

    Article  CAS  Google Scholar 

  32. Chattopadhyay J, Chakraborty S, Mukherjee A, Runtang W, Engel PS, Billups WE (2007) SET mechanism in the functionalization of single-walled carbon nanotubes. J Phys Chem C 111:17928–17932

    Article  CAS  Google Scholar 

  33. Chattopadhyay J, Sadana AK, Liang F, Beach JM, Xiao Y, Hauge RH, Billups WE (2005) Carbon nanotube salts. Arylation of single-wall carbon nanotubes. Org Lett 7:4067–4069

    Article  CAS  Google Scholar 

  34. Mukherjee A, Combs R, Chattopadhyay J, Abmayr DW, Engel PS, Billups WE (2008) Attachment of nitrogen and oxygen centered radicals to single-walled carbon nanotube salts. Chem Mater 20:7339–7343

    Article  CAS  Google Scholar 

  35. Martínez-Rubí Y, Guan J, Lin S, Scriver C, Sturgeon RE, Simard B (2007) Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature. Chem Commun 48:5146–5148

    Article  Google Scholar 

  36. Gebhardt B, Syrgiannis Z, Backes C, Graupner R, Hauke F, Hirsch A (2011) Carbon nanotube sidewall functionalization with carbonyl compounds—modified birch conditions vs the organometallic reduction approach. J Am Chem Soc 133:7985–7995

    Article  CAS  Google Scholar 

  37. Gebhardt B, Hoffman F, Backes C, Müller M, Plocke T, Maultzsch J, Thomsen C, Hauke F, Hirsch A (2011) Selective polycarboxylation of semiconducting single-walled carbon nanotubes by reductive sidewall functionalization. J Am Chem Soc 133:19459–19473

    Article  CAS  Google Scholar 

  38. Graupner R, Abraham J, Wunderlich D, Vencelová A, Lauffer P, Röhrl J, Hundhausen M, Ley L, Hirsch A (2006) Nucleophilic-alkylation-reoxidation: a functionalization sequence for single-wall carbon nanotubes. J Am Chem Soc 128:6683–6689

    Article  CAS  Google Scholar 

  39. Gebhardt B, Graupner R, Hauke F, Hirsch A (2010) A novel diameter-selective functionalization of SWCNTs with lithium alkynylides. Eur J Org Chem 1494–1501

    Google Scholar 

  40. Syrgiannis Z, Hauke F, Röhrl J, Hundhausen M, Graupner R, Elemes Y, Hirsch A (2008) Covalent sidewall functionalization of SWNTs by nucleophilic addition of lithium amides. Eur J Org Chem 2544–2550

    Google Scholar 

  41. Wunderlich D, Hauke F, Hirsch A (2008) Preferred functionalization of metallic and small-diameter single-walled carbon nanotubes by nucleophilic addition of organolithium and -magnesium compounds followed by reoxidation. Chemistry 14:1607–1614

    Article  CAS  Google Scholar 

  42. Roubeau O, Lucas A, Pénicaud A, Derré A (2007) Covalent functionalization of carbon nanotubes through organometallic reduction and electrophilic attack. J Nanosci Nanotechnol 7:3509–3513

    Article  CAS  Google Scholar 

  43. Maeda Y, Kato T, Hasegawa T, Kako M, Akasaka T, Lu J, Nagase S (2010) Two-step alkylation of single-walled carbon nanotubes: substituent effect on sidewall functionalization. Org Lett 12:996–999

    Article  CAS  Google Scholar 

  44. Maeda Y, Saito K, Akamatsu N, Chiba Y, Ohno S, Okui Y, Yamada M, Hasegawa T, Kako M, Akasaka T (2012) Analysis of functionalization degree of single-walled carbon nanotubes having various substituents. J Am Chem Soc 134:18101–18108

    Article  CAS  Google Scholar 

  45. Chen S, Shen W, Wu G, Chen D, Jiang M (2005) A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carbonyl groups. Chem Phys Lett 402:312–317

    Article  CAS  Google Scholar 

  46. Bayazit MK, Suri A, Coleman KS (2010) Formylation of single-walled carbon nanotubes. Carbon 48:3412–3419

    Article  CAS  Google Scholar 

  47. Viswanathan G, Chakrapani N, Yang H, Wei B, Chung H, Cho K, Ryu CY, Ajayan PM (2003) Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J Am Chem Soc 125:9258–9259

    Article  CAS  Google Scholar 

  48. Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296:188–194

    Article  CAS  Google Scholar 

  49. Boul PJ, Liu J, Mickelson ET, Huffman CB, Ericson LM, Chiang IW, Smith KA, Colbert DT, Hauge RH, Margrave JL, Smalley RE (1999) Reversible sidewall functionalization of buckytubes. Chem Phys Lett 310:367–372

    Article  CAS  Google Scholar 

  50. Wakahara T, Kako M, Maeda Y, Akasaka T, Kobayashi K, Nagase S (2003) Synthesis and characterization of cyclic silicon compounds of fullerenes. Curr Org Chem 7:927–943

    Article  CAS  Google Scholar 

  51. Maeda Y, Sato Y, Kako M, Wakahara T, Akasaka T, Lu J, Nagase S, Kobori Y, Hasegawa T, Motomiya K, Tohji K, Kasuya A, Wang D, Yu D, Gao Z, Han R, Ye H (2006) Preparation of single-walled carbon nanotube – organosilicon hybrids and their enhanced field emission properties. Chem Mater 18:4205–4208

    Article  CAS  Google Scholar 

  52. Kumashiro R, Hiroshiba N, Komatsu N, Akasaka T, Maeda Y, Suzuki S, Achiba Y, Hatakeyama R, Tanigaki K (2008) FET properties of chemically modified carbon nanotubes. J Phys Chem Solids 69:1206–1208

    Article  CAS  Google Scholar 

  53. Dyke CA, Stewart MP, Tour JM (2005) Separation of single-walled carbon nanotubes on silica gel. Materials morphology and Raman excitation wavelength affect data interpretation. J Am Chem Soc 127:4497–4509

    Article  CAS  Google Scholar 

  54. Wieckowski WW, Pastorin G, Benincasa M, LKlumpp C, Briand J-P, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 44:6358–6362

    Article  Google Scholar 

  55. Lee KM, Li L, Dai L (2005) Asymmetric end-functionalization of multi-walled carbon nanotubes. J Am Chem Soc 127:4122–4123

    Article  CAS  Google Scholar 

  56. Umeyama T, Imahori H (2013) Photofunctional hybrid nanocarbon materials. J Phys Chem C 117:3195–3209

    Article  CAS  Google Scholar 

  57. Guldi DM, Costa RD (2013) Nanocarbon hybrids: the paradigm of nanoscale self-ordering/self-assembling by means of charge transfer/doping interactions. J Phys Chem Lett 4:1489–1501

    Article  CAS  Google Scholar 

  58. Choi N, Kimura M, Kataura H, Suzuki S, Achiba Y, Mizutani W, Tokumoto H (2002) Effect of amines on single-walled carbon nanotubes in organic solvents: control of bundle structures. Jpn J Appl Phys Part 1 41:6264–6266

    Article  CAS  Google Scholar 

  59. Maeda Y, Kimura SI, Hiroshima Y, Kanda M, Lian Y, Wakahara T, Akasaka T, Hasegawa T, Tokumoto H, Shimizu T, Kataura H, Miyauchi Y, Maruyama S, Kobayashi K, Nagase S (2004) Dispersion of single-walled carbon nanotube bundles in nonaqueous solution. J Phys Chem B 108:18395–18397

    Article  CAS  Google Scholar 

  60. Samsonidze GG, Chou SG, Santos AP, Brar VW, Dresselhaus G, Dresselhaus MS, Selbst A, Swan AK, Ünlü MS, Goldberg BB, Chattopadhyay D, Kim SN, Papadimitrakopoulos F (2004) Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy. Appl Phys Lett 85:1006–1008

    Article  CAS  Google Scholar 

  61. Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2003) A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J Am Chem Soc 125:3370–3375

    Article  CAS  Google Scholar 

  62. Kim SN, Luo Z, Papadimitrakopoulos F (2005) Diameter and metallicity dependent redox influences on the separation of single-wall carbon nanotubes. Nano Lett 5:2500–2504

    Article  CAS  Google Scholar 

  63. Maeda Y, Kimura SI, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zhang X, Gao Z, Yu Y, Nagase S, Kazaoui S, Minam N, Shimizu T, Tokumoto H, Saito R (2005) Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc 127:10287–10290

    Article  CAS  Google Scholar 

  64. Lu J, Nagase S, Maeda Y, Wakahara T, Nakahodo T, Akasaka T, Yu D, Gao Z, Han R, Ye H (2005) Adsorption configuration of NH3 on single-wall carbon nanotubes. Chem Phys Lett 405:90–92

    Article  CAS  Google Scholar 

  65. Maeda Y, Kanda M, Hashimoto M, Hasegawa T, Kimura SI, Lian Y, Wakahara T, Akasaka T, Kazaoui S, Minami N, Okazaki T, Hayamizu Y, Hata K, Lu J, Nagase S (2006) Dispersion and separation of small-diameter single-walled carbon nanotubes. J Am Chem Soc 128:12239–12242

    Article  CAS  Google Scholar 

  66. Maeda Y, Hashimoto M, Hasegawa T, Kanda M, Tsuchiya T, Wakahara T, Akasaka T, Miyauchi Y, Maruyama S, Lu J, Nagase S (2007) Extraction of metallic nanotubes of zeolite-supported single-walled carbon nanotubes synthesized from alcohol. NANO Brief Rep Rev 2:221–226

    CAS  Google Scholar 

  67. Maeda Y, Takano Y, Sagara A, Hashimoto M, Kanda M, Si K, Lian Y, Nakahodo T, Tsuchiya T, Wakahara T, Akasaka T, Hasegawa T, Kazaoui S, Minami N, Lu J, Nagase S (2008) Simple purification and selective enrichment of metallic SWCNTs produced using the arc-discharge method. Carbon 46:1563–1569

    Article  CAS  Google Scholar 

  68. Lu J, Lai L, Luo G, Zhou J, Qin R, Wang D, Wang L, Mei WN, Li G, Gao Z, Nagase S, Maeda Y, Akasaka T, Yu D (2007) Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts. Small 3:1566–1576

    Article  CAS  Google Scholar 

  69. Maeda Y, Yamada M, Hasegawa T, Akasaka T, Lu J, Nagase S (2012) Interaction of single-walled carbon nanotubes with amine. NANO Brief Rep Rev 7:1130001-1130001-1113001-1130010

    Google Scholar 

  70. Maeda Y, Komoriya K, Sode K, Kanda M, Yamada M, Hasegawa T, Akasaka T, Lu J, Nagase S (2010) Separation of metallic single-walled carbon nanotubes using various amines. Phys Status Solidi B 247:2641–2644

    Article  CAS  Google Scholar 

  71. Cookson RC, De Costa SMB, Hudec J (1969) Photochemical addition of amines to styrenes. J Chem Soc Chem Commun 753–754

    Google Scholar 

  72. Bellas M, Bryce-Smith D, Gilbert A (1967) 1,4-Photoaddition of amines to benzene. Chem Commun 862–863

    Google Scholar 

  73. Cohen SG, Parola A, Parsons GHJ (1973) Photoreduction by amines. Chem Rev 73:141–161

    Article  CAS  Google Scholar 

  74. Kawanisi M, Matsunaga K (1972) Novel photochemical reactions of diphenylacetylene and stilbenes in amines. J Chem Soc Chem Commun 313–314

    Google Scholar 

  75. Hirsch A, Li Q, Wudl F (1991) Globe-trotting hydrogens on the surface of the fullerene compound C60H6(N(CH2CH2)2O)6. Angew Chem Int Ed 30:1309–1310

    Article  Google Scholar 

  76. Arbogast JW, Foote CS, Kao M (1992) Electron transfer to triplet C60. J Am Chem Soc 114:2277–2279

    Article  CAS  Google Scholar 

  77. Ma B, Lawson GE, Bunker CE, Kitaygorodskiy A, Sun YP (1995) Fullerene-based macromolecules from photochemical reactions of [60]fullerene and triethylamine. Chem Phys Lett 247:51–56

    Article  CAS  Google Scholar 

  78. Maeda Y, Hasuike Y, Ohkubo K, Tashiro A, Kaneko S, Kikuta M, Yamada M, Hasegawa T, Akasaka T, Zhou J, Lu J, Nagase S, Fukuzumi S (2014) Photochemical behavior of single-walled carbon nanotubes in the presence of propylamine. ChemPhysChem 15:1821–1826

    Article  CAS  Google Scholar 

  79. Chen Z, Thiel W, Hirsch A (2003) Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: dependence on the carbon-atom pyramidalization. ChemPhysChem 4:93–97

    Article  CAS  Google Scholar 

  80. Jhi SH, Louie SG, Cohen ML (2000) Electronic properties of oxidized carbon nanotubes. Phys Rev Lett 85:1710–1713

    Article  CAS  Google Scholar 

  81. Zhou J, Maeda Y, Lu J, Tashiro A, Hasegawa T, Luo G, Wang L, Lai L, Akasaka T, Nagase S, Gao Z, Qin R, Mei WN, Li G, Yu D (2009) Electronic-type- and diameter-dependent reduction of single-walled carbon nanotubes induced by adsorption of electron-donor molecules. Small 5:244–255

    Article  CAS  Google Scholar 

  82. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y-S, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1257

    Article  CAS  Google Scholar 

  83. Liu L, Wang T, Li J, Guo Z, Dai L, Zhang D, Zhu D (2003) Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem Phys Lett 367:747–752

    Article  CAS  Google Scholar 

  84. Kam NWS, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493

    Article  CAS  Google Scholar 

  85. Nakamura T, Ohana T, Ishihara M, Tanaka A, Koga Y (2006) Sidewall modification of single-walled carbon nanotubes with sulfur-containing functionalities and gold nanoparticle attachment. Chem Lett 35:742–743

    Article  CAS  Google Scholar 

  86. Syrgiannis Z, Parola VL, Hadad C, Lucío M, Vázquez E, Giacalone F, Prato M (2013) An atom-economical approach to functionalized single-walled carbon nanotubes: reaction with disulfides. Angew Chem Int Ed 52:6480–6483

    Article  CAS  Google Scholar 

  87. Engel PS, Gudimetla VB, Gancheff JS, Denis PA (2012) Solution phase photolysis of 1,2-dithiane alone and with single-walled carbon nanotubes. J Phys Chem A 116:8345–8351

    Article  CAS  Google Scholar 

  88. Lacombe S, Cardy H, Simon M, Khoukh A, Soumillion JP, Ayadim M (2002) Oxidation of sulfides and disulfides under electron transfer or singlet oxygen photosensitization using soluble or grafted sensitizers. Photochem Photobiol Sci 1:347–354

    Article  CAS  Google Scholar 

  89. Maeda Y, Niino Y, Kondo T, Yamada M, Hasegawa T, Akasaka T (2011) Oxygen atom transfer from peroxide intermediates to fullerenes. Chem Lett 40:1431–1433

    Article  CAS  Google Scholar 

  90. Smith AB III, Tokuyama H, Strongin RM, Furst GT, Romanow WJ, Chait BT, Mirza UA, Haller I (1995) Synthesis of oxo- and methylene-bridged C60 dimers, the first well-characterized species containing fullerene-fullerene bonds. J Am Chem Soc 117:9359–9360

    Article  CAS  Google Scholar 

  91. Lebedkin SF, Ballenweg S, Gross J, Taylor R, Krätschmer W (1995) Synthesis of C120O: a new dimeric [60]fullerene derivative. Tetrahedron Lett 1995:4971–4974

    Article  Google Scholar 

  92. Balch AL, Costa DA, Fawcett WR, Winkler K (1996) Electronic communication in fullerene dimers. Electrochemical and electron paramagnetic resonance study of the reduction of C120O. J Phys Chem 100:4823–4827

    Article  CAS  Google Scholar 

  93. Tsyboulski D, Heymann D, Bachilo SM, Alemany LB, Weisman RB (2004) Reversible dimerization of [5,6]-C60O. J Am Chem Soc 126:7350–7358

    Article  CAS  Google Scholar 

  94. Shigemitsu Y, Kaneko M, Tajima Y, Takeuchi K (2004) Efficient acetalization of epoxy rings on a fullerene cage. Chem Lett 33:1604–1605

    Article  CAS  Google Scholar 

  95. Tajima Y, Hara T, Honma T, Matsumoto S, Takeuchi K (2006) Lewis acid-assisted nucleophilic substitution of fullerene epoxide. Org Lett 8:3203–3205

    Article  CAS  Google Scholar 

  96. Yang X, Huang S, Jia Z, Xiao Z, Jiang Z, Zhang Q, Gan L, Zheng B, Yuan G, Zhang S (2008) Reactivity of fullerene epoxide: preparation of fullerene-fused thiirane, tetrahydrothiazolidin-2-one, and 1,3-dioxolane. J Org Chem 73:2518–2526

    Article  CAS  Google Scholar 

  97. Maeda Y, Higo J, Amagai Y, Matsui J, Ohkubo K, Yoshigoe Y, Hashimoto M, Eguchi K, Yamada M, Hasegawa T, Sato Y, Zhou J, Lu J, Miyashita T, Fukuzumi S, Murakami T, Tohji K, Nagase S, Akasaka T (2013) Helicity-selective photoreaction of single-walled carbon nanotubes with organosulfur compounds in the presence of oxygen. J Am Chem Soc 135:6356–6362

    Article  CAS  Google Scholar 

  98. Murray RW, Jindal SL (1972) Photosensitized oxidation of dialkyl disulfides. J Org Chem 37:3516–3520

    Article  CAS  Google Scholar 

  99. Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan H, Kittrell C, Hauge RH, Tour JM, Smalley RE (2003) Electronic structure control of single-waited carbon nanotube functionalization. Science 301:1519–1522

    Article  CAS  Google Scholar 

  100. O’Connell MJ, Bachilo SH, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Article  Google Scholar 

  101. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  Google Scholar 

  102. Ghosh S, Bachilo SM, Simonette RA, Beckingham KM, Weisman RB (2010) Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330:1656–1659

    Article  CAS  Google Scholar 

  103. Miyauchi Y, Iwamura M, Mouri S, Kawazoe O, Ohtsu M, Matsuda K (2013) Brightening of excitons in carbon nanotubes on dimensionality modification. Nat Photonics 7:715–719

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (B) (26286012) and Grants-in-Aid for Challenging Exploratory Research (26600034) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Maeda, Y., Akasaka, T. (2015). Recent Progress on the Chemical Reactions of Single-Walled Carbon Nanotubes. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_11

Download citation

Publish with us

Policies and ethics