Skip to main content

Advertisement

Log in

Synchrotron FTIR microspectroscopy of the yeast Saccharomyces cerevisiae after exposure to plasma-deposited nanosilver-containing coating

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present work was focused on elucidating changes in the model yeast Saccharomyces cerevisiae (cell composition, ultrastructure) after exposure to antimicrobial plasma-mediated nanocomposite films. In order to achieve this, a nanosilver-containing coating was deposited onto stainless steel using radiofrequency HMDSO plasma deposition, combined with simultaneous silver sputtering. X-ray photoelectron spectroscopy (XPS) confirmed the presence of silver nanoparticles embedded in an organosilicon matrix. In addition, scanning electron microscopy (SEM) demonstrated the nanoparticle-based morphology of the deposited layer. The antifungal properties towards S. cerevisiae were established, since a 1.4 log reduction in viable counts was observed after a 24-h adhesion compared to control conditions with the matrix alone. Differences in cell composition after exposure to the nanosilver was assessed for the protein region using, for the first time, synchrotron Fourier-transform infrared (FTIR) microspectroscopy of single S. cerevisiae cells, through in situ mapping with sub-cellular spatial resolution. IR spectrum of yeast cells recovered after a 24-h adhesion to the nanosilver-containing coating revealed a significant downshift (20 cm−1) of the amide I peak at 1655 cm−1, compared to freshly harvested cells. This lower band position, corresponding to a loss in α-helix structures, is indicative of the disordered secondary structures of proteins, due to the transition between active and inactive conformations under nanosilver-induced stress conditions. No significant effect on the nucleic acid region was detected. The inhibitory action of silver was targeted against both cell wall and intracellular proteins such as enzymes. Transmission electron microscopy (TEM) observations of the yeast ultrastructure confirmed serious morphological and structural damages. A homogeneous protein-binding distribution of nanosilver all over the cell was assumed, since the presence of electron-dense silver clusters was detected not only on the cell surface but also within the cell. For control experiments with the organosilicon matrix alone, no antimicrobial effect was observed, which was consistent with synchrotron FTIR results and TEM observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoyle BD, Costerton JW (1991) Prog Drug Res 37:91–105

    CAS  Google Scholar 

  2. Costerton JW, Stewart PS, Greenberg EP (1999) Science 284:1318–1322

    Article  CAS  Google Scholar 

  3. Ramage G, Martínez JP, López-Ribot JL (2006) FEMS Yeast Res 6:979–986

    Article  CAS  Google Scholar 

  4. Briandet R, Leriche V, Carpentier B, Bellon-Fontaine MN (1999) J Food Prot 62:994–998

    CAS  Google Scholar 

  5. Pradier CM, Rubio C, Poleunis C, Bertrand P, Marcus P, Compère C (2005) J Phys Chem B 109:9540–9549

    Article  CAS  Google Scholar 

  6. Sambhy V, MacBride MM, Peterson BR, Sen A (2006) J Am Chem Soc 128:9798–9808

    Article  CAS  Google Scholar 

  7. Favia P, Vulpio M, Marino R, d’Agostino R, Mota RP, Catalano M (2000) Plasmas Polym 5:1–6

    Article  CAS  Google Scholar 

  8. Sardella E, Favia P, Gristina R, Nardulli M, d’Agostino R (2006) Plasma Process Polym 3:456–469

    Article  CAS  Google Scholar 

  9. Jiang H, Manolache S, Lee Wong AC, Denes FS (2004) J Appl Polym Sci 93:1411–1422

    Article  CAS  Google Scholar 

  10. Silver S, le Phung T, Silver G (2006) J Ind Microbiol Biotech 33:627–634

    Article  CAS  Google Scholar 

  11. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  12. Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  13. Yang HC, Pon LA (2003) Drug Chem Toxicol 26:75–85

    Article  CAS  Google Scholar 

  14. Despax B, Raynaud P (2007) Plasma Process Polym 4:127–134

    Article  CAS  Google Scholar 

  15. Guillemot G, Despax B, Raynaud P, Zanna S, Marcus P, Schmitz P, Mercier-Bonin M (2008) Plasma Process Polym 5:228–238

    Article  CAS  Google Scholar 

  16. Saulou C, Despax B, Raynaud P, Zanna S, Marcus P, Mercier-Bonin M (2009) Appl Surf Sci. doi:10.1016/j.apsusc.2009.04.118

    Google Scholar 

  17. Kaminskyj SGW, Jilkine K, Szeghalmi A, Gough KM (2008) FEMS Microbiol Lett 284:1–8

    Article  CAS  Google Scholar 

  18. Szeghalmi A, Kaminskyj SGW, Gough KM (2007) Anal Bioanal Chem 387:1779–1789

    Article  CAS  Google Scholar 

  19. Jilkine K, Gough KM, Julian R, Kaminskyj SGW (2008) J Inorg Biochem 102:540–546

    Article  CAS  Google Scholar 

  20. Mohlenhoff B, Romeo M, Wood BR, Diem M (2005) Biophys J 88:3635–3640

    Article  CAS  Google Scholar 

  21. Nguyen TH, Fleet GH, Rogers PL (1998) Appl Microbiol Biotechnol 50:206–212

    Article  CAS  Google Scholar 

  22. Toubas D, Essendoubi M, Adt I, Pinon JM, Manfait M, Sockalingum GD (2007) Anal Bioanal Chem 387:1729–1737

    Article  CAS  Google Scholar 

  23. Galichet A, Sockalingum GD, Belarbi A, Manfait M (2001) FEMS Microbiol Lett 197:179–186

    Article  CAS  Google Scholar 

  24. Sockalingum GD, Sandt C, Toubas D, Gomez J, Pina P, Beguinot I, Witthuhn F, Aubert D, Allouch P, Pinon JM, Manfait M (2002) Vib Spectrosc 28:137–146

    Article  CAS  Google Scholar 

  25. Barth A, Zscherp C (2002) Quart Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  26. Kierans M, Staines AM, Bennett H, Gadd GM (1991) Biol Metals 4:100–106

    Article  CAS  Google Scholar 

  27. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  28. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Nanomedicine 3:95–101

    CAS  Google Scholar 

  29. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  30. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Appl Environ Microbiol 75:2973–2976

    Article  CAS  Google Scholar 

  31. Perrone GG, Tan SX, Dawes IW (2008) Biochim Biophys Acta 1783:1354–1368

    Article  CAS  Google Scholar 

  32. Liang Q, Zhou B (2007) Mol Biol Cell 18:4741–4749

    Article  CAS  Google Scholar 

  33. SAISIR (2008) Package of function for chemometrics in the MATLAB (R) environment. Dominique Bertrand coordinator (bertrand@nantes.inra.fr). Unité Biopolymères, Interactions, Assemblages. INRA, Rue de la Géraudière-BP 71627-44316 Nantes Cedex 3 France

Download references

Acknowledgements

The research described in this paper was performed at the French national synchrotron facility SOLEIL (Gif-sur-Yvette, France), using the SMIS beamline (proposal no 20060176). The authors gratefully acknowledge the “BioPleasure” project of the Research National Agency (ANR-07-BLAN-0196-01) for funding. The authors wish to thank S. Zanna (LPCS, Paris, France) for XPS analysis. Thanks are also due to S. Le Blond du Plouy of the Electron Microscopy Centre TEMSCAN (Paul Sabatier University, Toulouse, France) for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mercier-Bonin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saulou, C., Jamme, F., Maranges, C. et al. Synchrotron FTIR microspectroscopy of the yeast Saccharomyces cerevisiae after exposure to plasma-deposited nanosilver-containing coating. Anal Bioanal Chem 396, 1441–1450 (2010). https://doi.org/10.1007/s00216-009-3316-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3316-5

Keywords

Navigation