Skip to main content
Log in

Use of liquid chromatography coupled to low- and high-resolution linear ion trap mass spectrometry for studying the metabolism of paynantheine, an alkaloid of the herbal drug Kratom in rat and human urine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The Thai medicinal plant Mitragyna speciosa (Kratom in Thai) is misused as a herbal drug of abuse. During studies on the main Kratom alkaloid mitragynine (MG) in rats and humans, several dehydro analogs could be detected in urine of Kratom users, which were not found in rat urine after administration of pure MG. Questions arose as to whether these compounds are formed from MG only by humans or whether they are metabolites formed from the second abundant Kratom alkaloid paynantheine (PAY), the dehydro analog of MG. Therefore, the aim of the presented study was to identify the phase I and II metabolites of PAY in rat urine after administration of the pure alkaloid. This was first isolated from Kratom leaves. Liquid chromatography–linear ion trap mass spectrometry provided detailed structure information of the metabolites in the MSn mode particularly with high resolution. Besides PAY, the following phase I metabolites could be identified: 9-O-demethyl PAY, 16-carboxy PAY, 9-O-demethyl-16-carboxy PAY, 17-O-demethyl PAY, 17-O-demethyl-16,17-dihydro PAY, 9,17-O-bisdemethyl PAY, 9,17-O-bisdemethyl-16,17-dihydro PAY, 17-carboxy-16,17-dihydro PAY, and 9-O-demethyl-17-carboxy-16,17-dihydro PAY. These metabolites indicated that PAY was metabolized via the same pathways as MG. Several metabolites were excreted as glucuronides or sulfates. The metabolism studies in rats showed that PAY and its metabolites corresponded to the MG-related dehydro compounds detected in urine of the Kratom users. In conclusion, PAY and its metabolites may be further markers for a Kratom abuse in addition of MG and its metabolites.

Isolation of paynantheine from kratom leaves; high-resolution mass spectrum of the glucuronide of its 9-O-demethyl metabolite, and paynantheine structure with marked sides of biotransformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shellard EJ (1974) Bull Narc 26:41–55

    CAS  Google Scholar 

  2. Ponglux D, Wongseripipatana S, Takayama H, Kikuchi M, Kurihara M, Kitajima M, Aimi N, Sakai S (1994) Planta Med 60:580–581

    Article  CAS  Google Scholar 

  3. Matsumoto K, Horie S, Ishikawa H, Takayama H, Aimi N, Ponglux D, Watanabe K (2004) Life Sci 74:2143–2155

    Article  CAS  Google Scholar 

  4. Suwanlert S (1975) Bull Narc 27:21–27

    CAS  Google Scholar 

  5. Jansen KL, Prast CJ (1988) J Ethnopharmacol 23:115–119

    Article  CAS  Google Scholar 

  6. Takayama H (2004) Chem Pharm Bull (Tokyo) 52:916–928

    Article  CAS  Google Scholar 

  7. Babu KM, McCurdy CR, Boyer EW (2008) Clin Toxicol (Phila) 46:146–152

    CAS  Google Scholar 

  8. Maurer HH, Pfleger K, Weber AA (2007) Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites. Wiley-VCH, Weinheim

    Google Scholar 

  9. Maurer HH (2004) Clin Chem Lab Med 42:1310–1324

    Article  CAS  Google Scholar 

  10. Maurer HH, Sauer C, Theobald DS (2006) Ther Drug Monit 28:447–453

    Article  CAS  Google Scholar 

  11. Maurer HH (2006) J Mass Spectrom 41:1399–1413

    Article  CAS  Google Scholar 

  12. Philipp AA, Wissenbach DK, Zoerntlein SW, Klein ON, Kanogsunthornrat J, Maurer HH (2009) J Mass Spectrom 44:1249–1261

    Article  CAS  Google Scholar 

  13. McKay AF, Ott WL, Taylor GW, Buchanan MN, Crooker JF (1950) Can J Res 28:683–688

    Google Scholar 

  14. Ma J, Yin W, Zhou H, Liao X, Cook JM (2009) J Org Chem 74:264–273

    Article  CAS  Google Scholar 

  15. Trager WF, Lee CM, Beckett AH (1967) Tetrahedron 23:365–374

    Article  CAS  Google Scholar 

  16. Trager WF, Lee CM, Phillipson JD, Beckett AH (1967) Tetrahedron 23:1043–1047

    Article  CAS  Google Scholar 

  17. Maurer HH, Bickeboeller-Friedrich J, Kraemer T, Peters FT (2000) Toxicol Lett 112:133–142

    Article  Google Scholar 

  18. Peters FT, Meyer MR, Fritschi G, Maurer HH (2005) J Chromatogr B Analyt Technol Biomed Life Sci 824:81–91

    Article  CAS  Google Scholar 

  19. Ewald AH, Peters FT, Weise M, Maurer HH (2005) J Chromatogr B Analyt Technol Biomed Life Sci 824:123–131

    Article  CAS  Google Scholar 

  20. Springer D, Peters FT, Fritschi G, Maurer HH (2002) J Chromatogr B Analyt Technol Biomed Life Sci 773:25–33

    Article  CAS  Google Scholar 

  21. Springer D, Fritschi G, Maurer HH (2003) J Chromatogr B Analyt Technol Biomed Life Sci 793:331–342

    Article  CAS  Google Scholar 

  22. Springer D, Fritschi G, Maurer HH (2003) J Chromatogr B Analyt Technol Biomed Life Sci 793:377–388

    Article  CAS  Google Scholar 

  23. Springer D, Fritschi G, Maurer HH (2003) J Chromatogr B Analyt Technol Biomed Life Sci 796:253–266

    Article  CAS  Google Scholar 

  24. Springer D, Peters FT, Fritschi G, Maurer HH (2003) J Chromatogr B Analyt Technol Biomed Life Sci 789:79–91

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank their colleagues Markus R. Meyer, Gabriele Ulrich, and Carsten Schröder as well as Kornelia Weidemann and Edeltraud Thiry, ThermoFisher Scientific, Scientific Instruments, Dreieich (Germany) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Maurer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philipp, A.A., Wissenbach, D.K., Weber, A.A. et al. Use of liquid chromatography coupled to low- and high-resolution linear ion trap mass spectrometry for studying the metabolism of paynantheine, an alkaloid of the herbal drug Kratom in rat and human urine. Anal Bioanal Chem 396, 2379–2391 (2010). https://doi.org/10.1007/s00216-009-3239-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3239-1

Keywords

Navigation