Skip to main content
Log in

Metabolism of Rhizoma coptidis in Human Urine by Ultra-High-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Rhizoma coptidis extract and its alkaloids were reported to exhibit various pharmacological activities. However, pharmacokinetics investigations indicated that the plasma concentrations of the alkaloids were too low to explain their systemic therapeutic actions. Thus, the metabolic profile of Rhizoma coptidis in humans is yet to be fully investigated and the present study aimed to investigate the metabolic profile of Rhizoma coptidis in human urine after oral administration of Rhizoma coptidis extract.

Methods

In this study, the metabolism of Rhizoma coptidis at a clinical dose (5 g/60 kg/day) was investigated using ultra-high-performance liquid chromatography coupled with high-resolution LTQ-Orbitrap mass spectrometry.

Results

Totally, 30 constituents including 7 prototypes, 5 sulfation metabolites and 18 glucuronide conjugates were elucidated and identified on the basis of the characteristics of their high-resolution precursor ions, product ions, and chromatographic retention times in human urine. Among the 7 prototypes, 3 prototypes (M20, M26 and M28) were identified definitely by comparing with standards. Based on the metabolites detected in human urine, a possible metabolic pathway of Rhizoma coptidis in vivo was proposed.

Conclusions

The results demonstrated that the metabolic fate of Rhizoma coptidis mainly involved sulfation and glucuronidation in human urine and the glucuronide conjugate M14 (berberrubinen-9-O-glucuronide) might be a pharmacokinetic marker for Rhizoma coptidis alkaloids in humans. This study will be helpful to comprehensively understand the metabolic process of Rhizoma coptidis and how Rhizoma coptidis shows its pharmacological effects in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ho CE, Goh YL, Zhang C. From prejudice to evidence: the case of Rhizoma coptidis in Singapore. Evid Based Complement Altern Med. 2014;2014:871720.

    Google Scholar 

  2. Chang CH, Yu B, Su CH, Chen DS, Hou YC, Chen YS, et al. Coptidis rhizome and Si Jun Zi Tang can prevent Salmonella enterica serovar Typhimurium infection in mice. PLoS One. 2014;9(8):e105362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kong W, Wang J, Xiao X, Chen S, Yang M. Evaluation of antibacterial effect and mode of Coptidis rhizoma by microcalorimetry coupled with chemometric techniques. Analyst. 2012;137(1):216–22.

    Article  PubMed  CAS  Google Scholar 

  4. Lee BH, Chathuranga K, Uddin MB, Weeratunga P, Kim MS, Cho WK, et al. Coptidis Rhizoma extract inhibits replication of respiratory syncytial virus in vitro and in vivo by inducing antiviral state. J Microbiol. 2017;55(6):488–98.

    Article  PubMed  CAS  Google Scholar 

  5. Wang N, Tan HY, Li L, Yuen MF, Feng Y. Berberine and Coptidis Rhizoma as potential anticancer agents: recent updates and future perspectives. J Ethnopharmacol. 2015;176:35–48.

    Article  PubMed  CAS  Google Scholar 

  6. Mohammadi A, Mansoori B, Baradaran B. Regulation of miRNAs by herbal medicine: an emerging field in cancer therapies. Biomed Pharmacother. 2017;86:262–70.

    Article  PubMed  CAS  Google Scholar 

  7. Tang J, Feng Y, Tsao S, Wang N, Curtain R, Wang Y. Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations. J Ethnopharmacol. 2009;126(1):5–17.

    Article  PubMed  CAS  Google Scholar 

  8. Ma H, Hu Y, Zou Z, Feng M, Ye X, Li X. Antihyperglycemia and antihyperlipidemia effect of protoberberine alkaloids from Rhizoma Coptidis in HepG2 cell and diabetic KK-Ay mice. Drug Dev Res. 2016;77(4):163–70.

    Article  PubMed  CAS  Google Scholar 

  9. Choi JS, Ali MY, Jung HA, Oh SH, Choi RJ, Kim EJ. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies. J Ethnopharmacol. 2015;171:28–36.

    Article  PubMed  CAS  Google Scholar 

  10. Pang B, Yu XT, Zhou Q, Zhao TY, Wang H, Gu CJ, et al. Effect of Rhizoma coptidis (Huang Lian) on treating diabetes mellitus. Evid Based Complement Altern Med. 2015;2015:921416.

    Google Scholar 

  11. He K, Hu Y, Ma H, Zou Z, Xiao Y, Yang Y, et al. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta. 2016;1862(9):1696–709.

    Article  PubMed  CAS  Google Scholar 

  12. Cao Y, Bei W, Hu Y, Cao L, Huang L, Wang L, et al. Hypocholesterolemia of Rhizoma Coptidis alkaloids is related to the bile acid by up-regulated CYP7A1 in hyperlipidemic rats. Phytomedicine. 2012;19(8–9):686–92.

    Article  PubMed  CAS  Google Scholar 

  13. Xie W, Gu D, Li J, Cui K, Zhang Y. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice. PLoS One. 2011;6(9):e24520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Feng Y, Wang N, Ye X, Li H, Feng Y, Cheung F, et al. Hepatoprotective effect and its possible mechanism of Coptidis rhizoma aqueous extract on carbon tetrachloride-induced chronic liver hepatotoxicity in rats. J Ethnopharmacol. 2011;138(3):683–90.

    Article  PubMed  CAS  Google Scholar 

  15. Ye X, Feng Y, Tong Y, Ng KM, Tsao S, Lau GK, et al. Hepatoprotective effects of Coptidis rhizoma aqueous extract on carbon tetrachloride-induced acute liver hepatotoxicity in rats. J Ethnopharmacol. 2009;124(1):130–6.

    Article  PubMed  CAS  Google Scholar 

  16. Friedemann T, Otto B, Klatschke K, Schumacher U, Tao Y, Leung AK, et al. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells. J Ethnopharmacol. 2014;155(1):607–15.

    Article  PubMed  Google Scholar 

  17. Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS, Choi JS. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull. 2009;32(8):1433–8.

    Article  PubMed  CAS  Google Scholar 

  18. Hong HJ, Chen PY, Shih TC, Ou CY, Jhuo MD, Huang YY, et al. Computational pharmaceutical analysis of anti-Alzheimer’s Chinese medicine Coptidis Rhizoma alkaloids. Mol Med Rep. 2012;5(1):142–7.

    PubMed  CAS  Google Scholar 

  19. Tan HL, Chan KG, Pusparajah P, Duangjai A, Saokaew S, Mehmood Khan T, et al. Rhizoma coptidis: a potential cardiovascular protective agent. Front Pharmacol. 2016;7:362.

    PubMed  PubMed Central  Google Scholar 

  20. Lv X, Li Y, Tang C, Zhang Y, Zhang J, Fan G. Integration of HPLC-based fingerprint and quantitative analyses for differentiating botanical species and geographical growing origins of Rhizoma coptidis. Pharm Biol. 2016;54(12):3264–71.

    Article  PubMed  CAS  Google Scholar 

  21. Yi L, Liang ZT, Peng Y, Guo P, Wong LL, Wan XJ, et al. Histochemical evaluation of alkaloids in rhizome of Coptis chinensis using laser microdissection and liquid chromatography/mass spectrometry. Drug Test Anal. 2015;7(6):519–30.

    Article  PubMed  CAS  Google Scholar 

  22. Huang P, Qian X, Li J, Cui X, Chen L, Cai B, et al. Simultaneous determination of 11 alkaloids in crude and wine-processed Rhizoma coptidis by HPLC-PAD. J Chromatogr Sci. 2015;53(1):73–8.

    Article  PubMed  CAS  Google Scholar 

  23. Qian XC, Zhang L, Tao Y, Huang P, Li JS, Chai C, et al. Simultaneous determination of ten alkaloids of crude and wine-processed Rhizoma Coptidis aqueous extracts in rat plasma by UHPLC–ESI-MS/MS and its application to a comparative pharmacokinetic study. J Pharm Biomed Anal. 2015;105:64–73.

    Article  PubMed  CAS  Google Scholar 

  24. Chen Y, Li Y, Wang Y, Yang Q, Dong Y, Weng X, et al. Comparative pharmacokinetics of active alkaloids after oral administration of Rhizoma Coptidis extract and Wuji Wan formulas in rat using a UPLC–MS/MS method. Eur J Drug Metab Pharmacokinet. 2015;40(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  25. Xue Y, Xiong J, Shi HL, Liu YM, Qing LS, Liao X. In vitro metabolic study of Rhizoma coptidis extract using liver microsomes immobilized on magnetic nanoparticles. Anal Bioanal Chem. 2013;405(27):8807–17.

    Article  PubMed  CAS  Google Scholar 

  26. Ma BL, Yao MK, Zhong J, Ma YM, Gao CL, Wu JS, et al. Increased systemic exposure to Rhizoma coptidis alkaloids in lipopolysaccharide-pretreated rats attributable to enhanced intestinal absorption. Drug Metab Dispos. 2012;40(2):381–8.

    Article  PubMed  CAS  Google Scholar 

  27. Qiu F, Zhu Z, Kang N, Piao S, Qin G, Yao X. Isolation and identification of urinary metabolites of berberine in rats and humans. Drug Metab Dispos. 2008;36(11):2159–65.

    Article  PubMed  CAS  Google Scholar 

  28. Yang Y, Kang N, Xia H, Li J, Chen L, Qiu F. Metabolites of protoberberine alkaloids in human urine following oral administration of Coptidis Rhizoma decoction. Planta Med. 2010;76(16):1859–63.

    Article  PubMed  CAS  Google Scholar 

  29. Ren W, Xin SK, Han LY, Zuo R, Li Y, Gong MX, et al. Comparative metabolism of four limonoids in human liver microsomes using ultra-high-performance liquid chromatography coupled with high-resolution LTQ-Orbitrap mass spectrometry. Rapid Commun Mass Spectrom. 2015;29(21):2045–56.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang XS, Ren W, Bian BL, Zhao HY, Wang S. Comparative metabolism of tussilagone in rat and human liver microsomes using ultra-high-performance liquid chromatography coupled with high-resolution LTQ-Orbitrap mass spectrometry. Rapid Commun Mass Spectrom. 2015;29(18):1641–50.

    Article  PubMed  CAS  Google Scholar 

  31. Ren W, Li Y, Zuo R, Wang HJ, Si N, Zhao HY, et al. Species-related difference between limonin and obacunone among five liver microsomes and zebrafish using ultra-high-performance liquid chromatography coupled with a LTQ-Orbitrap mass spectrometer. Rapid Commun Mass Spectrom. 2014;28(21):2292–300.

    Article  PubMed  CAS  Google Scholar 

  32. Li Y, Zhang Y, Wang R, Wei L, Deng Y, Ren W. Metabolic profiling of five flavonoids from Dragon’s Blood in human liver microsomes using high-performance liquid chromatography coupled with high resolution mass spectrometry. J Chromatogr B. 2017;1052:91–102.

    Article  CAS  Google Scholar 

  33. Yang W, Chen Y, Xi C, Zhang R, Song Y, Zhan Q, et al. Liquid chromatography–tandem mass spectrometry-based plasma metabonomics delineate the effect of metabolites’ stability on reliability of potential biomarkers. Anal Chem. 2013;85(5):2606–10.

    Article  PubMed  CAS  Google Scholar 

  34. Ding Y, Hou JW, Zhang Y, Zhang LY, Zhang T, Chen Y, et al. Metabolism of genipin in rat and identification of metabolites by using ultraperformance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. Evid Based Complement Altern Med. 2013;2013:957030.

    Article  Google Scholar 

  35. Dunn WB, Erban A, Weber RJ, Creek DJ, Brown M, Breitling R, et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics. 2013;9(1):44–66.

    Article  CAS  Google Scholar 

  36. Wang GW, Bao B, Han ZQ, Han QY, Yang XL. Metabolic profile of Fructus Gardeniae in human plasma and urine using ultra high-performance liquid chromatography coupled with high-resolution LTQ-orbitrap mass spectrometry. Xenobiotica. 2016;46(10):901–12.

    Article  PubMed  CAS  Google Scholar 

  37. Wang P, Zhao Y, Zhu Y, Sun J, Yerke A, Sang S, et al. Metabolism of dictamnine in liver microsomes from mouse, rat, dog, monkey, and human. J Pharm Biomed Anal. 2016;119:166–74.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang QS, Wang GW, Han ZQ, Chen XM, Na R, Jin H, et al. Metabolic profile of Rhizoma coptidis in human plasma determined using ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry. Rapid Commun Mass Spectrom. 2017. https://doi.org/10.1002/rcm.7990.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zuo R, Ren W, Bian BL, Wang HJ, Wang YN, Hu H, et al. Metabolic fate analysis of Huang-Lian-Jie-Du Decoction in rat urine and feces by LC–IT-MS combining with LC–FT-ICR-MS: a feasible strategy for the metabolism study of Chinese medical formula. Xenobiotica. 2016;46(1):65–81.

    Article  PubMed  CAS  Google Scholar 

  40. Pan JF, Yu C, Zhu DY, Zhang H, Zeng JF, Jiang SH, et al. Identification of three sulfate-conjugated metabolites of berberine chloride in healthy volunteers’ urine after oral administration. Acta Pharmacol Sin. 2002;23(1):77–82.

    PubMed  CAS  Google Scholar 

  41. Qiao X, Wang Q, Wang S, Miao WJ, Li YJ, Xiang C, et al. Compound to extract to formulation: a knowledge-transmitting approach for metabolites identification of Gegen-Qinlian Decoction, a traditional Chinese medicine formula. Sci Rep. 2016;6:39534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Miao WJ, Wang Q, Bo T, Ye M, Qiao X, Yang WZ, et al. Rapid characterization of chemical constituents and rats metabolites of the traditional Chinese patent medicine Gegen-Qinlian-Wan by UHPLC/DAD/qTOF-MS. J Pharm Biomed Anal. 2013;72:99–108.

    Article  PubMed  CAS  Google Scholar 

  43. Li JY, Wang XB, Luo JG, Kong LY. Seasonal variation of alkaloid contents and anti-inflammatory activity of Rhizoma coptidis based on fingerprints combined with chemometrics methods. J Chromatogr Sci. 2015;53(7):1131–9.

    Article  PubMed  CAS  Google Scholar 

  44. Ma BL, Ma YM. Pharmacokinetic properties, potential herb-drug interactions and acute toxicity of oral Rhizoma coptidis alkaloids. Expert Opin Drug Metab Toxicol. 2013;9(1):51–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renbatu Bu.

Ethics declarations

Funding

The work was supported by the innovation team of the education department of the Inner Mongolia autonomous region (No. NMGIRT-A1606).

Conflict of interest

Qingshan Zhang, Gaowa Wang, Xi Chen, Zhiqiang Han, Xiangmei Chen, Risu Na, Haburi Jin, Ping Li and Renbatu Bu have declared no conflict of interest.

Ethical approval

This study was ethically approved by the Medical Ethics Committee of Affiliated Hospital of Inner Mongolia University for the Nationalities (Tongliao, China). Informed consent was obtained from all individual participants included in the study. All procedures performed in this study involving human participants were in accordance with the ethical standards of the Medical Ethics Committee of Affiliated Hospital of Inner Mongolia University for the Nationalities and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, G., Chen, X. et al. Metabolism of Rhizoma coptidis in Human Urine by Ultra-High-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Eur J Drug Metab Pharmacokinet 43, 441–452 (2018). https://doi.org/10.1007/s13318-018-0463-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-018-0463-0

Navigation