Skip to main content
Log in

Development of tip-enhanced optical spectroscopy for biological applications: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Tip-enhanced optical spectroscopy is an approach that holds a good deal of promise for the nanoscale characterisation of matter. Tip-enhanced Raman spectroscopy (TERS) has been demonstrated on a variety of samples: inorganic, organic and biological. Imaging using TERS has been shown for carbon nanotubes due to their high scattering efficiency. There are a number of compelling motivations to consider alternative approaches for biological samples; most importantly, the potential for heat damage of biomolecules and long acquisition times. These issues may be addressed through the development of tip-enhanced coherent anti-Stokes Raman scattering microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McWilliams A (2008) Nanotechnology: a realistic market assessment. BCC Research, Wellesley (see http://www.bccresearch.com/report/NANO31C.html)

  2. Rothemund PWK (2006) Nature 440:297–302

    Article  CAS  Google Scholar 

  3. Abbe E (1873) Arch Mikrosc Anat 9:413–468

    Google Scholar 

  4. Betzig E, Finn PL, Weiner JS (1992) Appl Phys Lett 60:2484–2486

    Article  CAS  Google Scholar 

  5. Betzig E, Trautman JK (1992) Science 257:189–195

    Article  CAS  Google Scholar 

  6. Novotny L, Pohl DW (1995) NATO ASI Ser E184:21–33

    Google Scholar 

  7. Zenhausern F, O′Boyle MP, Wickramasinghe HK (1994) Appl Phys Lett 65:1623

    Article  CAS  Google Scholar 

  8. Zenhausern F, Martin Y, Wickramasinghe HK (1995) Science 269:1083–1085

    Article  CAS  Google Scholar 

  9. Hillenbrand R, Keilman F (2000) Phys Rev Lett 85:3029–3032

    Article  CAS  Google Scholar 

  10. Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136

    Article  CAS  Google Scholar 

  11. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:96101

    Article  Google Scholar 

  12. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2005) J Raman Spectrosc 36:514–550

    Article  Google Scholar 

  13. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Chem Phys Lett 335:369–374

    Article  CAS  Google Scholar 

  14. Downes A, Mouras R, Mari M, Elfick A (2009) J Raman Spectrosc (in press)

  15. Neacsu CC, Dreyer J, Behr N, Raschke NB (2006) Phys Rev B 73:193406

    Google Scholar 

  16. Domke KF, Zhang D, Pettinger B (2006) J Am Chem Soc 128:14721–14727

    Article  CAS  Google Scholar 

  17. Zhang W, Cui Yeo B-S, Schmid T, Hafner C, Zenobi R (2007) Nano Lett 7:1401–1405

    Article  CAS  Google Scholar 

  18. Hartschuh A, Pedrosa HN, Novotny L, Krauss TD (2003) Science 301:1354–1356

    Article  CAS  Google Scholar 

  19. Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174–180

    Article  CAS  Google Scholar 

  20. Anderson N, Hartschuh A, Novotny L (2007) Nano Lett 7:577–582

    Article  CAS  Google Scholar 

  21. Anderson N, Anger P, Hartschuh A, Novotny L (2006) Nano Lett 6:744–749

    Article  CAS  Google Scholar 

  22. Hartschuh A, Sanchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90:95503

    Article  Google Scholar 

  23. Anderson N, Hartschuh A, Cronin S, Novotny L (2004) J Am Chem Soc 127:2533–2537

    Article  Google Scholar 

  24. Roy D, Wang J, Welland ME (2006) Faraday Discuss 132:215–226

    Article  CAS  Google Scholar 

  25. Feynman RP (1960) Eng Sci 23:22–26

    Google Scholar 

  26. Kodama T, Umezawa T, Watanabe S, Ohtani H (2008) J Microsc 229:240–246

    Article  CAS  Google Scholar 

  27. Gan Y (2007) Rev Sci Instrum 78:081101

    Article  Google Scholar 

  28. Ghenuche P, Cherukulappurath S, Taminiau T, Van Hulst NF, Quidan R (2008) Phys Rev Lett 101:116805

    Article  Google Scholar 

  29. Ren B, Picardi G, Pettinger B (2004) Rev Sci Instrum 75:837

    Article  CAS  Google Scholar 

  30. Eligal L, Culfaz F, McCaughan V, Cade NI, Richards D (2009) Rev Sci Instrum 80:0333701

    Google Scholar 

  31. Pan SH, Hudson EW, Davis JC (1998) Appl Phys Lett 73:2992

    Article  CAS  Google Scholar 

  32. Lin MF, Shung KW-K (1994) Phys Rev B 50:17744–17747

    Article  CAS  Google Scholar 

  33. Hillenbrand R, Keilmann F, Hanarp P, Sutherland DS, Aizpurua J (2003) Appl Phys Lett 83:368–370

    Google Scholar 

  34. de Wilde Y, Formanek F, Carminati R, Gralak B, Lemoine P-A, Joulain K, Mulet J-P, Chen Y, Greffet J-J (2006) Nature 444:740–743

    Article  Google Scholar 

  35. Brehm M, Taubner T, Hillenbrand R, Keilmann F (2006) Nano Lett 6:1307–13010

    Article  CAS  Google Scholar 

  36. Yeo B-S, Schmid T, Zhang W, Zenobi R (2007) Anal Bioanal Chem 387:2655–2662

    Article  CAS  Google Scholar 

  37. Taguchi A, Hayazawa N, Saito Y, Ishitobi H, Tarun A, Kawata S (2009) Opt Express 17:6509–6518

    Article  CAS  Google Scholar 

  38. Ikeda K, Fujimoto N, Uehara H, Uosaki K (2008) Chem Phys Lett 460:205–208

    Article  CAS  Google Scholar 

  39. Notingher I, Elfick A (2005) J Phys Chem B 109:15699–15706

    Article  CAS  Google Scholar 

  40. Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Surf Sci 603:1335–1341

    Article  CAS  Google Scholar 

  41. Downes A, Salter D, Elfick A (2006) J Phys Chem B 110:6692–6698

    Article  CAS  Google Scholar 

  42. Downes A, Salter D, Elfick A (2008) J Microsc Oxford 229:184–188

    Google Scholar 

  43. Domke KF, Zhang D, Pettinger B (2007) J Phys Chem C 111:8611–8616

    Article  CAS  Google Scholar 

  44. Karrai K, Grober RD (1995) Appl Phys Lett 66:1842–1844

    Article  CAS  Google Scholar 

  45. Rensen WHJ, van Hulst NF, Kammer SB (2000) Appl Phys Lett 77:1557–1559

    Article  CAS  Google Scholar 

  46. Albrecht TR, Grütter P, Horne D, Rugar D (1991) J Appl Phys 69:668–673

    Article  Google Scholar 

  47. Higgins MJ, Reiner C, Uchihashi T, Sader JE, McKendry R, Jarvis SP (2005) Nanotechnology 16:S85–S89

    Article  CAS  Google Scholar 

  48. Hembacher S, Giessibl FJ, Mannhart J (2004) Science 305:380–383

    Article  CAS  Google Scholar 

  49. Downes A, Welland ME (1998) Phys Rev Lett 81:1857–1860

    Article  CAS  Google Scholar 

  50. Downes A, Dumas P (2002) Appl Surf Sci 212–213:770–774

    Google Scholar 

  51. Downes A, Salter D, Elfick A (2006) Opt Express 14:11324–11329

    Article  Google Scholar 

  52. Mangum BD, Mu C, Gerton JM (2008) Opt Express 16:6183–6193

    Article  Google Scholar 

  53. Sánchez E, Novotny L, Xie XS (1999) Phys Rev Lett 82:4014–4017

    Article  Google Scholar 

  54. Hayazawa N, Furusawa K, Taguchi A, Kawata S, Hiroshi A (2009) Appl Phys Lett 94:193112

    Article  Google Scholar 

  55. Hartschuh A, Qian H, Meixner AJ, Anderson N, Novotny L (2006) Surf Interface Anal 38:1472–1480

    Article  CAS  Google Scholar 

  56. Rasmussen A, Deckert V (2006) J Raman Spectrosc 37:311–317

    Article  CAS  Google Scholar 

  57. Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) J Raman Spectrosc 40:240–243

    Article  CAS  Google Scholar 

  58. Yeo B-S, Madler S, Schmid T, Zhang W, Zenobi R (2008) J Phys Chem C 112:4867–4873

    Article  CAS  Google Scholar 

  59. Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Chem Phys Lett 472:1–13

    Article  CAS  Google Scholar 

  60. Neugebauer U, Rosch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) ChemPhysChem 7:1428–1430

    Article  CAS  Google Scholar 

  61. Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) ChemPhysChem 8:124–137

    Article  CAS  Google Scholar 

  62. Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Phys Rev Lett 92:220801

    Google Scholar 

  63. Geshev P, Klein S, Witting T, Dickmann K, Hietschold M (2004) Phys Rev B 70:75402

    Article  Google Scholar 

  64. Zhang W, Schmid T, Yeo B-S, Zenobi R (2008) J Phys Chem C 112:2104–2108

    Article  CAS  Google Scholar 

  65. Duncan MD, Reinjtes J, Manuccia TJ (1982) Opt Lett 7:350–352

    Article  CAS  Google Scholar 

  66. Zumbusch A, Holtom GR, Xie XS (1999) Phys Rev Lett 82:4142–4145

    Article  CAS  Google Scholar 

  67. Cheng JX, Jia KJ, Zheng G, Xie XS (2002) Biophys J 83:502–509

    Article  CAS  Google Scholar 

  68. Evans CL, Potma EO, Puoris′haag M, Côté D, Lin CP, Xie XS (2005) Proc Natl Acad Sci 102:16807

    Article  CAS  Google Scholar 

  69. Moger J, Johnston BD, Tyler CR (2008) Opt Express 16:3408–3419

    Article  CAS  Google Scholar 

  70. Schaller RD, Ziegelbauer J, Lee LF, Haber LH, Saykally RJ (2002) J Phys Chem B 106:8489–8492

    Article  CAS  Google Scholar 

  71. Downes A, Mouras R, Elfick A (2009) J Raman Spectrosc 40:757–762

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Engineering and Physical Sciences Research Council, UK; APDE was supported with an Advanced Research Fellowship and Challenging Engineering Award (Grant No.s GR/S52155/01, GR/52148/01 and EP/E007864/1). ARD is an RCUK Academic Fellow in Biomedical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair P. D. Elfick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elfick, A.P.D., Downes, A.R. & Mouras, R. Development of tip-enhanced optical spectroscopy for biological applications: a review. Anal Bioanal Chem 396, 45–52 (2010). https://doi.org/10.1007/s00216-009-3223-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3223-9

Keywords

Navigation