Skip to main content
Log in

Determination of ganglioside composition and structure in human brain hemangioma by chip-based nanoelectrospray ionization tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report here on a preliminary investigation of ganglioside composition and structure in human hemangioma, a benign tumor in the frontal cortex (HFC) in comparison to normal frontal cortex (NFC) tissue using for the first time advanced mass spectrometric methods based on fully automated chip-nanoelectrospray (nanoESI) high-capacity ion trap (HCT) and collision-induced dissociation (CID). The high ionization efficiency, sensitivity and reproducibility provided by the chip-nanoESI approach allowed for a reliable MS-based ganglioside comparative assay. Unlike NFC, ganglioside mixture extracted from HFC was found dominated by species of short glycan chains exhibiting lower overall sialic acid content. In HFC, only GT1 (d18:1/20:0), and GT3 (d18:1/25:1) polysialylated species were detected. Interestingly, none of these trisialylated forms was detected in NFC, suggesting that such components might selectively be associated with HFC. Unlike the case of previously investigated high malignancy gliosarcoma, in HFC one modified O-Ac-GD2 and one modified O-Ac-GM4 gangliosides were observed. This aspect suggests that these O-acetylated structures could be associated with cerebral tumors having reduced malignancy grade. Fragmentation analysis by CID in MS2 mode using as precursors the ions corresponding to GT1 (d18:1/20:0) and GD1 (d18:1/20:0) provided data corroborating for the first time the presence of the common GT1a and GT1b isomers and the incidence of unusual GT1c and GT1d glycoforms in brain hemangioma tumor.

Human brain biomarker discovery by advanced chipbased nanoelectrospray mass spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel AM (1998) Acta Neurol Scand 98:369–371

    Article  CAS  Google Scholar 

  2. Pozzati E, Acciarri N, Tognetti F, Marliani F, Giangaspero F (1996) Neurosurgery 38:662–670

    Article  CAS  Google Scholar 

  3. Houtteville JP (1997) Surg Neurol 48:610–614

    Article  CAS  Google Scholar 

  4. Detweiler PW, Porter RW, Zabramski JM, Spetzler RF (1997) J Neurosurg 87:629–632

    Article  Google Scholar 

  5. Dorner L, Buhl R, Hugo HH, Jansen O, Barth H, Mehdorn HM (2005) Acta Neurochir 147:1091–1096

    Article  CAS  Google Scholar 

  6. Mosnier JF, Brunon J, Nuti C (2007) Neurochirurgie 53:131–135

    Article  Google Scholar 

  7. Lehnhardt FG, von Smekal U, Rűckriem B, Stenzel W, Neveling M, Heiss WD, Jacobs AH (2005) Arch Neurol 62:653–658

    Article  Google Scholar 

  8. Ledeen RW, Yu RK (1982) Methods Enzymol 83:139–191

    Article  CAS  Google Scholar 

  9. Fishman PH, Brady RO (1976) Science 194:906–915

    Article  CAS  Google Scholar 

  10. Ledeen RW J (1978) Supramol Struct 8:1–17

    Article  Google Scholar 

  11. Ledeen RW, Yu RK (1982) Methods Enzymol 83:109–191

    Google Scholar 

  12. Yu RK, Macala LJ, Taki T, Weinfeld HM, Yu FS (1988) J Neurochem 50:1825–1829

    Article  CAS  Google Scholar 

  13. Yu RK (1994) Prog Brain Res 101:31–44

    Article  CAS  Google Scholar 

  14. Hakomori S (2000) Glycoconj J 17:627–647

    Article  CAS  Google Scholar 

  15. Ledeen RW, Wu G (2002) Neurochem Res 27:637–647

    Article  CAS  Google Scholar 

  16. Ziche M, Alessandri G, Gullino PM (1989) Lab Invest 61:629–634

    CAS  Google Scholar 

  17. Alessandri G, Kaju KS, Gullino PM (1986) Inv Metast 6:145–165

    CAS  Google Scholar 

  18. Alssandri G, Ile Cristan G, Ziche M, Cappa APM, Gullino PM (1992) J Cell Physiol 151:23–28

    Article  Google Scholar 

  19. Tai T, Kawashima I, Ozawa H, Kotani M, Ogura K (1997) Pure Appl Chem 69:1903–1910

    Article  CAS  Google Scholar 

  20. Kracun I, Rosner H, Drnovsek V, Heffer-Lauc M, Cosovic C, Lauc G (1991) Int J Dev Biol 35:289–295

    CAS  Google Scholar 

  21. Schnaar RL, Needham LK (1994) Methods Enzymol 230:371–389

    Article  CAS  Google Scholar 

  22. Zamfir A, Vukelic Ž, Bindila L, Almeida R, Sterling A, Allen M, Peter-Katalinic J (2004) J Am Soc Mass Spectrom 15:1649–1657

    Article  CAS  Google Scholar 

  23. Vukelic Ž, Bognar SK, Froesch M, Bîndilă L, Radić B, Allen M, Peter Katalinić J, Zamfir AD (2007) Glycobiology 17:504–515

    Article  CAS  Google Scholar 

  24. Vukelić Z, Zamfir AD, Bindila L, Froesch M, Peter-Katalinić J, Usuki S, Yu RK (2005) J Am Soc Mass Spectrom 16:571–580

    Article  CAS  Google Scholar 

  25. Zamfir AD, Lion N, Vukelic Z, Bindila L, Rossier J, Girault HH, Peter-Katalinic J (2005) Lab Chip 5:298–307

    Article  CAS  Google Scholar 

  26. Almeida R, Mosoarca C, Chirita M, Udrescu V, Dinca N, Vukelić Z, Allen M, Zamfir AD (2008) Anal Biochem 378:43–52

    Article  CAS  Google Scholar 

  27. Serb A, Schiopu C, Flangea C, Vukelić Ž, Sisu E, Dinca N, Zagrean L, Zamfir AD (2009) Eur J Mass Spectrom 15:541–553

    Article  CAS  Google Scholar 

  28. Zamfir AD, Vukelić Ž, Schneider A, Sisu E, Dinca N, Ingendoh A (2007) J Biomol Tech 18:188–193

    Google Scholar 

  29. Serb A, Schiopu C, Flangea C, Sisu E, Zamfir AD (2009) J Mass Spectrom in press

  30. Svennerholm L, Fredman P (1980) Biochim Biophys Acta 617:97–109

    CAS  Google Scholar 

  31. Vukelić Ž, Metelmann W, Müthing J, Kos M, Peter-Katalinić J (2001) Biol Chem 382:259–274

    Article  Google Scholar 

  32. Domon B, Costello CE (1988) Glycoconjugate J 5:397–409

    Article  CAS  Google Scholar 

  33. Costello CE, Juhasz P, Perreault H (1994) Progr Brain Res 101:45–61

    Article  CAS  Google Scholar 

  34. IUPAC-IUB Joint Commission on Biochemical Nomenclature (1998) Eur J Biochem 257:293–298

    Article  Google Scholar 

  35. Saito M, Sugiyama K (2000) Biochim Biophys Acta 1474:88–92

    CAS  Google Scholar 

  36. Visnapuu T, Zamfir AD, Mosoarca C, Stanescu MD, Alamäe T (2009) Rapid Commun Mass Spectrom 23:1337–1346

    Article  CAS  Google Scholar 

  37. Rouwendal GJ, Wuhrer M, Florack DE, Koeleman CA, Deelder AM, Bakker H, Stoopen GM, van Die I, Helsper JP, Hokke CH, Bosch D (2007) Glycobiology 17:334–344

    Article  CAS  Google Scholar 

  38. Catalina MI, Koeleman CA, Deelder AM, Wuhrer M (2007) Rapid Commun Mass Spectrom 21:1053–1061

    Article  CAS  Google Scholar 

  39. Wuhrer M, Koeleman CA, Deelder AM (2009) Anal Chem 81:4422–4432

    Article  CAS  Google Scholar 

  40. Zeng G, Yu RK (2008) Curr Drug Targets 9:317–324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Romanian National Authority for Scientific Research through the PN-II-41001/2007 project. Permission for experiments with human tissue for scientific purposes was obtained from the Ethical Commission of “Victor Babes” University of Medicine and Pharmacy Timisoara and Zagreb Medical School, under the Project no. 108120 granted by the Croatian Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina D. Zamfir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiopu, C., Flangea, C., Capitan, F. et al. Determination of ganglioside composition and structure in human brain hemangioma by chip-based nanoelectrospray ionization tandem mass spectrometry. Anal Bioanal Chem 395, 2465–2477 (2009). https://doi.org/10.1007/s00216-009-3188-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3188-8

Keywords

Navigation