Skip to main content

Neurological Analyses: Focus on Gangliosides and Mass Spectrometry

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

Gangliosides, sialylated glycosphingolipids, are particularly enriched in mammalian central nervous system where their expression is cell type-specific and changes particularly during brain development, maturation, aging, and diseases. For this reason, gangliosides are important diagnostic markers for various brain ailments, including primary and secondary brain tumors and neurodegenerative diseases. Among all biochemical and biophysical methods employed so far for ganglioside analysis, mass spectrometry (MS) emerged as one of the most reliable due to the sensitivity, accuracy, and speed of analysis as well as the possibility to characterize in details the molecular structure of the identified biomarkers.

This chapter presents significant achievements of MS with either electrospray (ESI), chip-based ESI, or matrix-assisted laser desorption/ionization (MALDI) in the analysis of gangliosides in normal and diseased human brain. Specifically, the chapter assesses the MS contribution in determination of topospecificity, filogenetic, and brain development stage dependence of ganglioside composition and structure as well as in discovery of ganglioside markers in neurodegenerative/neurodevelopmental conditions, primary and secondary brain tumors. The highlighted accomplishments in characterization of novel structures associated to severe brain pathologies show that MS has real perspectives to become a routine method for early diagnosis and therapy based on this biomolecule class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida R, Mosoarca C, Chirita M et al (2008) Coupling of fully automated chip-based electrospray ionization to high-capacity ion trap mass spectrometer for ganglioside analysis. Anal Biochem 378:43–52

    Article  CAS  Google Scholar 

  2. Ammirati M, Cobbs CS, Linskey ME et al (2010) The role of retreatment in the management of recurrent/progressive brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:85–96

    Article  Google Scholar 

  3. Augustinsson LE, Blennow K, Blomstrand C et al (1997) Intracerebroventricular administration of GM1 ganglioside to presenile Alzheimer patients. Dement Geriatr Cogn Disord 8:26–33

    Article  CAS  Google Scholar 

  4. Bagce HF, Saleh S, Adamovich SV, Tunik E (2012) Visuomotor gain distortion alters online motor performance and enhances primary motor cortex excitability in patients with stroke. Neuromodulation 15:361–369

    Article  Google Scholar 

  5. Birks SM, Danquah JO, King L et al (2011) Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma. Neuro Oncol 13:950–960

    Article  CAS  Google Scholar 

  6. Bleich-Cohen M, Hendler T, Weizman R et al (2013) Working memory dysfunction in schizophrenia patients with obsessive-compulsive symptoms: an fMRI study. Eur Psychiatry 29(3):160–166

    Article  Google Scholar 

  7. Cameron M, Moran P (2009) Prenatal screening and diagnosis of neural tube defects. Prenat Diagn 29:402–411

    Article  Google Scholar 

  8. Cannella MS, Oderfeld-Nowak B, Gradkowska M et al (1990) Derivatives of ganglioside GM1 as neuronotrophic agents: comparison of in vivo and in vitro effects. Brain Res 513:286–294

    Article  CAS  Google Scholar 

  9. Chahlavi A, Rayman P, Richmond AL et al (2005) Glioblastomas induce T-lymphocyte death by two distinct pathways involving gangliosides and CD70. Cancer Res 65:5428–5538

    Article  CAS  Google Scholar 

  10. Colorado RA, Shukla K, Zhou Y et al (2012) Multi-task functional MRI in multiple sclerosis patients without clinical disability. Neuroimage 59:573–581

    Article  Google Scholar 

  11. Di Pietro F, McAuley JH, Parkitny L et al (2013) Primary somatosensory cortex function in complex regional pain syndrome: a systematic review and meta-analysis. J Pain 14:1001–1018

    Article  Google Scholar 

  12. Di Pietro F, McAuley JH, Parkitny L et al (2013) Primary motor cortex function in complex regional pain syndrome: a systematic review and meta-analysis. J Pain 14:1270–1288

    Article  Google Scholar 

  13. Diaz Y, Gonzalez A, Lopez A et al (2009) Anti-ganglioside anti-idiotypic monoclonal antibody-based cancer vaccine induces apoptosis and antiangiogenic effect in a metastatic lung carcinoma. Cancer Immunol Immunother 58:1117–1128

    Article  CAS  Google Scholar 

  14. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentation in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

  15. Egge H, Peter-Katalinić J, Reuter G et al (1985) Analysis of gangliosides using fast atom bombardment mass spectrometry. Chem Phys Lipids 37:127–141

    Article  CAS  Google Scholar 

  16. Fish RG (1996) Role of gangliosides in tumour progression: a molecular target for cancer therapy? Med Hypotheses 46:140–144

    Article  CAS  Google Scholar 

  17. Flangea C, Serb A, Sisu E et al (2011) Chip-based nanoelectrospray mass spectrometry of brain gangliosides. Biochim Biophys Acta 1811:513–535

    Article  CAS  Google Scholar 

  18. Flangea C, Fabris D, Vukelić Ž et al (2013) Mass spectrometry of gangliosides from human sensory and motor cortex. Aust J Chem 66:781–790

    Article  CAS  Google Scholar 

  19. Fredman P, Hedberg K, Brezicka T (2003) Gangliosides as therapeutic targets for cancer. BioDrugs 17:155–167

    Article  CAS  Google Scholar 

  20. Gaspar LE, Mehta MP, Patchell RA et al (2010) The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: a systematic review and evidence based clinical practice guideline. J Neurooncol 96:17–32

    Article  Google Scholar 

  21. Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the caudate nucleus. Prog Neurobiol 86:141–155

    Article  Google Scholar 

  22. Gow CH, Chien CR, Chang YL (2008) Radiotherapy in lung adenocarcinoma with brain metastases: effects of activating epidermal growth factor receptor mutations on clinical response. Clin Cancer Res 14:162–168

    Article  CAS  Google Scholar 

  23. Hakomori S, Handa K (2002) Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: essential basis to define tumor malignancy. FEBS Lett 531:88–92

    Article  CAS  Google Scholar 

  24. Hallinan JT, Hegde AN, Lim WE (2013) Dilemmas and diagnostic difficulties in meningioma. Clin Radiol 68:837–844

    Article  CAS  Google Scholar 

  25. Han SJ, Yang I, Tihan T et al (2010) Primary gliosarcoma: key clinical and pathologic distinctions from glioblastoma with implications as a unique oncologic entity. J Neurooncol 96:313–320

    Article  Google Scholar 

  26. Handa K, Hakomori SI (2012) Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J 29:627–637

    Article  CAS  Google Scholar 

  27. Hedberg KM, Mahesparan R, Read TA et al (2001) The glioma-associated gangliosides 3′-isoLM1, GD3 and GM2 show selective area expression in human glioblastoma xenografts in nude rat brains. Neuropathol Appl Neurobiol 27:451–464

    Article  CAS  Google Scholar 

  28. Hegde AN, Mohan S, Lim CC (2012) CNS cavernous haemangioma: “popcorn” in the brain and spinal cord. Clin Radiol 67:380–388

    Article  CAS  Google Scholar 

  29. Huffman K (2012) The developing, aging neocortex: how genetics and epigenetics influence early developmental patterning and age-related change. Front Genet 3:212–220

    Article  Google Scholar 

  30. IUPAC-IUB Joint Commission on Biochemical Nomenclature (1998) Nomenclature of glycolipids. Eur J Biochem 257:293–298

    Article  Google Scholar 

  31. Kaas JH (2012) The evolution of neocortex in primates. Prog Brain Res 195:91–102

    Article  Google Scholar 

  32. Kalanj S, Kracun I, Rosner H, Cosović C (1991) Regional distribution of brain gangliosides in Alzheimer’s disease. Neurol Croat 40:269–281

    CAS  Google Scholar 

  33. Kniep B, Kniep E, Ozkucur N et al (2006) 9-O-acetyl GD3 protects tumor cells from apoptosis. Int J Cancer 119:67–73

    Article  CAS  Google Scholar 

  34. Kojovic M, Bologna M, Kassavetis P et al (2012) Functional reorganization of sensorimotor cortex in early Parkinson disease. Neurology 78:1441–1448

    Article  CAS  Google Scholar 

  35. Kracun I, Kalanj S, Talan-Hranilovic J et al (1992) Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem Int 20:433–438

    Article  CAS  Google Scholar 

  36. Krafft C, Neudert L, Simat T et al (2005) Near infrared Raman spectra of human brain lipids. Spectrochim Acta A Mol Biomol Spectrosc 61:1529–1535

    Article  Google Scholar 

  37. Kroes RA, He H, Emmett MR et al (2010) Overexpression of ST6GalNAcV, a ganglioside-specific alpha2,6-sialyltransferase, inhibits glioma growth in vivo. Proc Natl Acad Sci U S A 107:12646–12651

    Article  CAS  Google Scholar 

  38. Lefebvre L (2012) Primate encephalization. Prog Brain Res 195:393–412

    Article  Google Scholar 

  39. Lehnhardt FG, von Smekal U, Rűckriem B et al (2005) Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. Arch Neurol 62:653–658

    Article  Google Scholar 

  40. Levery SB (2005) Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol 405:300–369

    Article  CAS  Google Scholar 

  41. Lode HN, Schmidt M, Seidel D et al (2013) Vaccination with anti-idiotype antibody ganglidiomab mediates a GD(2)-specific anti-neuroblastoma immune response. Cancer Immunol Immunother 62:999–1010

    Article  CAS  Google Scholar 

  42. Louis David N, Hiroko O, Wiestler D (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  CAS  Google Scholar 

  43. Lukas RV, Nicholas MK (2013) Update in the treatment of high-grade gliomas. Neurol Clin 31:847–867

    Article  Google Scholar 

  44. Lutterbach J, Guttenberger R, Pagenstecher A (2001) Gliosarcoma: a clinical study. Radiother Oncol 61:57–64

    Article  CAS  Google Scholar 

  45. Meck WH, Church RM, Matell MS (2013) Hippocampus, time, and memory—a retrospective analysis. Behav Neurosci 127:642–654

    Article  Google Scholar 

  46. Messner MC, Cabot MC (2010) Glucosylceramide in humans. Adv Exp Med Biol 688:156–164

    Article  CAS  Google Scholar 

  47. Mitsuzuka K, Handa K, Satoh M et al (2005) A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 280:35545–35553

    Article  CAS  Google Scholar 

  48. Mochizuki Y, Mizutani T, Shimizu T et al (2011) Proportional neuronal loss between the primary motor and sensory cortex in amyotrophic lateral sclerosis. Neurosci Lett 503:73–75

    Article  CAS  Google Scholar 

  49. Mosoarca C, Ghiulai RM, Novaconi CR et al (2011) Application of chip-based nanoelectrospray ion trap mass spectrometry to compositional and structural analysis of gangliosides in human fetal cerebellum. Anal Lett 44:1036–1049

    Article  CAS  Google Scholar 

  50. Nelles G, Jentzen W, Bockisch A et al (2011) Neural substrates of good and poor recovery after hemiplegic stroke: a serial PET study. J Neurol 258:2168–2175

    Article  CAS  Google Scholar 

  51. Noguchi M, Suzuki T, Kabayama K et al (2007) GM3 synthase gene is a novel biomarker for histologic classification and drug sensitivity against epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Cancer Sci 98:1625–1632

    Article  CAS  Google Scholar 

  52. Oikawa N, Yamaguchi H, Ogino K et al (2009) Gangliosides determine the amyloid pathology of Alzheimer’s disease. Neuroreport 20:1043–1046

    CAS  Google Scholar 

  53. Park Y, Lebrilla CB (2005) Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides. Mass Spectrom Rev 24:232–264

    Article  CAS  Google Scholar 

  54. Pellizzaro Venti M, Paciaroni M et al (2012) Caudate infarcts and hemorrhages. Front Neurol Neurosci 30:137–140

    Article  Google Scholar 

  55. Pernber Z, Blennow K, Bogdanovic N et al (2012) Altered distribution of the gangliosides GM1 and GM2 in Alzheimer’s disease. Dement Geriatr Cogn Disord 33:174–188

    Article  CAS  Google Scholar 

  56. Relini A, Marano N, Gliozzi A (2013) Probing the interplay between amyloidogenic proteins and membranes using lipid monolayers and bilayers. Adv Colloid Interface Sci. doi:10.1016/j.cis.2013.10.015

    Google Scholar 

  57. Rodriguez FJ, Lim KS, Bowers D et al (2013) Pathological and molecular advances in pediatric low-grade astrocytoma. Annu Rev Pathol 8:361–379

    Article  CAS  Google Scholar 

  58. Ryan JM, Rice GE, Mitchell MD (2013) The role of gangliosides in brain development and the potential benefits of perinatal supplementation. Nutr Res 33:877–887

    Article  CAS  Google Scholar 

  59. Sandhoff K, Harzer K (2013) Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 33:10195–10208

    Article  CAS  Google Scholar 

  60. Santin AD, Ravindranath MH, Bellone S et al (2004) Increased levels of gangliosides in the plasma and ascitic fluid of patients with advanced ovarian cancer. BJOG 111:613–618

    Article  CAS  Google Scholar 

  61. Schiopu C, Flangea C, Capitan F et al (2009) Determination of ganglioside composition and structure in human brain hemangioma by chip-based nanoelectrospray ionization tandem mass spectrometry. Anal Bioanal Chem 395:2465–2477

    Article  CAS  Google Scholar 

  62. Schiopu C, Vukelić Z, Capitan F et al (2012) Chip-nanoelectrospray quadrupole time-of-flight tandem mass spectrometry of meningioma gangliosides: a preliminary study. Electrophoresis 33:1778–1786

    Article  CAS  Google Scholar 

  63. Schneider JS, Sendek S, Daskalakis C et al (2010) GM1 ganglioside in Parkinson’s disease: results of a five year open study. J Neurol Sci 292:45–51

    Article  CAS  Google Scholar 

  64. Schneider JS, Gollomp SM, Sendek S et al (2013) A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson’s disease patients. J Neurol Sci 324:140–148

    Article  CAS  Google Scholar 

  65. Serb A, Sisu E, Vukelić Z et al (2012) Profiling and sequencing of gangliosides from human caudate nucleus by chip-nanoelectrospray mass spectrometry. J Mass Spectrom 47:1561–1570

    Article  CAS  Google Scholar 

  66. Seyfried TN, Mukherjee P (2010) Ganglioside GM3 is antiangiogenic in malignant brain cancer. J Oncol 2010:961243

    Article  Google Scholar 

  67. Shibuya H, Hamamura K, Hotta H et al (2012) Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci 103:1656–1664

    Article  CAS  Google Scholar 

  68. Shukla GS, Krag DN (2006) Selective delivery of therapeutic agents for the diagnosis and treatment of cancer. Expert Opin Biol Ther 6:39–54

    Article  CAS  Google Scholar 

  69. Sisu E, Flangea C, Serb A et al (2011) High-performance separation techniques hyphenated to mass spectrometry for ganglioside analysis. Electrophoresis 32:1591–1609

    CAS  Google Scholar 

  70. Steiner G, Shaw A, Choo-Smith LP et al (2003) Distinguishing and grading human gliomas by IR spectroscopy. Biopolymers 72:464–471

    Article  CAS  Google Scholar 

  71. Svennerholm L, Fredman P (1980) A procedure for the quantitative isolation of brain gangliosides. Biochim Biophys Acta 617:97–109

    Article  CAS  Google Scholar 

  72. Taki T (2012) An approach to glycobiology from glycolipidomics: ganglioside molecular scanning in the brains of patients with Alzheimer’s disease by TLC-blot/matrix assisted laser desorption/ionization-time of flight MS. Biol Pharm Bull 35:1642–1647

    Article  CAS  Google Scholar 

  73. Tang T, Kmet M, Corral L et al (2005) Testisin, a glycosyl-phosphatidylinositol-linked serine protease, promotes malignant transformation in vitro and in vivo. Cancer Res 65:868–878

    CAS  Google Scholar 

  74. Tivnan A, Orr WS, Gubala V et al (2012) Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One 7:e38129

    Article  CAS  Google Scholar 

  75. Tokuda N, Zhang Q, Yoshida S (2006) Genetic mechanisms for the synthesis of fucosyl GM1 in small cell lung cancer cell lines. Glycobiology 16:916–925

    Article  CAS  Google Scholar 

  76. Yamazaki T, Suzuki M, Irie T et al (2008) Amyotrophic lateral sclerosis associated with IgG anti-GalNAc-GD1a antibodies. Clin Neurol Neurosurg 110:722–724

    Article  Google Scholar 

  77. Yu RK, Tsai YT, Ariga T (2012) Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 37:1230–1244

    Article  CAS  Google Scholar 

  78. Valdes-Gonzalez T, Goto-Inoue N et al (2011) New approach for glyco- and lipidomics-molecular scanning of human brain gangliosides by TLC-Blot and MALDI-QIT-TOF MS. J Neurochem 116:678–683

    Article  CAS  Google Scholar 

  79. Vriend C, Raijmakers P, Veltman DJ et al (2014) Depressive symptoms in Parkinson’s disease are related to reduced [123I]FP-CIT binding in the caudate nucleus. J Neurol Neurosurg Psychiatry 85(2):159–164

    Article  Google Scholar 

  80. Vukelić Z, Metelmann W, Müthing J et al (2001) Anencephaly: structural characterization of gangliosides in defined brain regions. Biol Chem 382:259–274

    Google Scholar 

  81. Vukelić Z, Zamfir AD, Bindila L et al (2005) Screening and sequencing of complex sialylated and sulfated glycosphingolipid mixtures by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 16:571–580

    Article  Google Scholar 

  82. Vukelić Z, Zarei M, Peter-Katalinić J et al (2006) Analysis of human hippocampus gangliosides by fully-automated chip-based nanoelectrospray tandem mass spectrometry. J Chromatogr A 1130:238–245

    Article  Google Scholar 

  83. Vukelić Z, Kalanj-Bognar S, Froesch M et al (2007) Human gliosarcoma-associated ganglioside composition is complex and distinctive as evidenced by high-performance mass spectrometric determination and structural characterization. Glycobiology 17:504–515

    Article  Google Scholar 

  84. Wagener R, Röhn G, Schillinger G et al (1999) Ganglioside profiles in human gliomas: quantification by microbore high performance liquid chromatography and correlation to histomorphology and grading. Acta Neurochir (Wien) 141:1339–13345

    Article  CAS  Google Scholar 

  85. Walcott BP, Nahed BV, Brastianos PK et al (2013) Radiation treatment for WHO grade II and III meningiomas. Front Oncol 3:227

    Article  Google Scholar 

  86. Walker FO (2007) Huntington’s disease. Lancet 369:218

    Article  CAS  Google Scholar 

  87. Wessels PH, Weber WE, Raven G et al (2003) Supratentorial grade II astrocytoma: biological features and clinical course. Lancet Neurol 2:395–403

    Article  Google Scholar 

  88. Zamfir AD, Vukelić Z, Bindila L et al (2004) Fully-automated chip-based nanoelectrospray tandem mass spectrometry of gangliosides from human cerebellum. J Am Soc Mass Spectrom 15:1649–1657

    Article  CAS  Google Scholar 

  89. Zamfir AD, Serb A, Vukelić Ž et al (2011) Assessment of the molecular expression and structure of gangliosides in brain metastasis of lung adenocarcinoma by an advanced approach based on fully automated chip-nanoelectrospray mass spectrometry. J Am Soc Mass Spectrom 22:2145–2159

    Article  CAS  Google Scholar 

  90. Zamfir AD, Fabris D, Capitan F et al (2013) Profiling and sequence analysis of gangliosides in human astrocytoma by high-resolution mass spectrometry. Anal Bioanal Chem 405:7321–7335

    Article  CAS  Google Scholar 

  91. Zhang Q, Furukawa K, Chen HH et al (2006) Metastatic potential of mouse Lewis lung cancer cells is regulated via ganglioside GM1 by modulating the matrix metalloprotease-9 localization in lipid rafts. J Biol Chem 281:18145–18155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, projects PN-II-ID-PCE-2011-3-0047 PN-II-RU-2011-TE-0008 and PN-II-PCCA-2011-142 and by EU Commission, project FP7 Marie Curie-PIRSES-“MS-Life”-2010-269-256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina D. Zamfir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zamfir, A.D. (2014). Neurological Analyses: Focus on Gangliosides and Mass Spectrometry. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_8

Download citation

Publish with us

Policies and ethics