Skip to main content
Log in

The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Spectrofluorimetric analysis of proteinaceous binding media is particularly promising because proteins employed in paintings are often fluorescent and media from different sources have significantly different fluorescence spectral profiles. Protein-based binding media derived from eggs, milk and animal tissue have been used for painting and for conservation, but their analysis using non-destructive techniques is complicated by interferences with pigments, their degradation and their low concentration. Changes in the fluorescence excitation emission spectra of films of binding media following artificial ageing to an equivalent of 50 and 100 years of museum lighting include the reduction of bands ascribed to tyrosine, tryptophan and Maillard reaction products and an increase in fluorescent photodegradation. Fluorescence of naturally aged paint is dependent on the nature of the pigment present and, with egg-based media, in comparison with un-pigmented films, emissions ascribed to amino acids are more pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Andreotti, I. Bonaduce, M.P. Colombini, G. Gautier, F. Modugno, E. Ribechini, Anal. Chem. 78, 13 (2006)

    Article  Google Scholar 

  2. C. Tokarski, E. Martin, C. Rolando, C. Cren-Olive, Anal. Chem. 78, 5 (2006)

    Article  Google Scholar 

  3. M. Fabbri, M. Picollo, S. Porcinai, M. Bacci, Appl. Spectrosc. 55, 420 (2001)

    Article  ADS  Google Scholar 

  4. P. Vandenabeele, B. Wehling, L. Moens, H. Edwards, M. De Reu, G. Van Hooykonk, Anal. Chim. Acta 407, 1 (2000)

    Article  Google Scholar 

  5. A. Nevin, I. Osticioli, D. Anglos, A. Burnstock, S. Cather, E. Castellucci, Anal. Chem. 79, 6143 (2007)

    Article  Google Scholar 

  6. T. Miyoshi, Japan. J. Appl. Phys. 24, 8 (1985)

    Article  Google Scholar 

  7. L.J. Larson, K.-S.K. Shin, J.I. Zink, J. Am. Inst. Conserv. 30, 1 (1991)

    Article  Google Scholar 

  8. D. Anglos, M. Solomidou, I. Zergioti, V. Zafiropulos, T.G. Papazoglou, C. Fotakis, Appl. Spectrosc. 50, 1331 (1996)

    Article  ADS  Google Scholar 

  9. A. Nevin, S. Cather, D. Anglos, C. Fotakis, Anal. Chim. Acta 573, 341 (2006)

    Article  Google Scholar 

  10. T. Miyoshi, Japan. J. Appl. Phys. 27, 4 (1987)

    Google Scholar 

  11. C. Miliani, G. Favaro, A. Romani, Spectrochim. Acta A 54, 581 (1998)

    Article  Google Scholar 

  12. K.J. Van Den Berg, J.J. Boon, I. Pastorova, L.F.M. Spetter, J. Mass Spectrom. 35, 4 (2000)

    Google Scholar 

  13. O.F. van den Brink, J.J. Boon, P.B. O’Connor, M.C. Duursma, R.M. Heeren, J. Mass Spectrom. 36, 5 (2001)

    Google Scholar 

  14. M.P. Colombini, F. Modugno, J. Sep. Sci. 27, 3 (2004)

    Article  Google Scholar 

  15. M.J. Davies, R.J.W. Truscott, J. Photochem. Photobiol. B 63, 1 (2001)

    Article  Google Scholar 

  16. J.S. Church, K.R. Millington, Biospectroscopy 2, 249 (1996)

  17. S.M. Halpine, Stud. Conserv. 37, 1 (1992)

    Article  Google Scholar 

  18. M.R. Schilling, H.P. Khanjian, J. Am. Inst. Conserv. 35, 2 (1996)

    Google Scholar 

  19. M.P. Colombini, R. Fuoco, A. Giacomelli, B. Muscatello, Stud. Conserv. 43, 1 (1998)

    Article  Google Scholar 

  20. M.P. Colombini, F. Modugno, F. Silvano, M. Onor, Stud. Conserv. 45, 1 (2000)

    Article  Google Scholar 

  21. M.P. Colombini, F. Modugno, E. Menicagli, R. Fuoco, A. Giacomelli, Microchem. J. 67, 1 (2000)

    Article  Google Scholar 

  22. A. Nevin, D. Comelli, G. Valentini, D. Anglos, A. Burnstock, S. Cather, R. Cubeddu, Anal. Bioanal. Chem. 388, 1897 (2007)

    Article  Google Scholar 

  23. A. Ladhokin, in Encyclopedia of Analytical Chemistry, ed. by R. Meyers (Wiley, Chichester, 2000)

  24. Z. Deyl, I. Miksik, J. Zicha, J. Chromatogr. A 836, 1 (1999)

    Article  Google Scholar 

  25. D. Comelli, C. D’andrea, G. Valentini, R. Cubeddu, C. Colombo, L. Toniolo, Appl. Opt. 43, 10 (2004)

    Article  Google Scholar 

  26. A. Nevin, D. Anglos, Laser Chem. (2006), DOI: 10.1155/2006/82823

  27. A. Casoli, G. Palla, J. Tavlaridis, Stud. Conserv. 43, 3 (1998)

    Article  Google Scholar 

  28. G. Gautier, M.P. Colombini, Talanta 73, 1 (2007)

    Article  Google Scholar 

  29. D.A. Scott, M. Dennis, N. Khandekar, J. Keeney, D. Carson, L.S. Dodd, Stud. Conserv. 48, 1 (2003)

    Google Scholar 

  30. M.R. Schilling, H.P. Khanjian, L.A.C. Souza, J. Am. Inst. Conserv. 35, 1 (1996)

    Article  Google Scholar 

  31. M.R. Schilling, H.P. Khanjian, in 11th Trienn. Meet. ICOM Committee for Conservation, Edinburgh, Scotland, 1–6 September 1996 (James & James, London, 1996), pp. 211–219

  32. A.M. Edwards, E. Silva, J. Photochem. Photobiol. B 63, 1 (2001)

    Article  Google Scholar 

  33. C.Y. Lu, Y.Y. Liu, Biochim. Biophys. Acta 1571, 1 (2002)

    Google Scholar 

  34. C.D. Cennini, Il libro dell’Arte (Dover, London, 1960)

    Google Scholar 

  35. R. Howells, A. Burnstock, G. Hedley, S. Hackney, in Paris Congr. Adhesives and Consolidants, 2–8 September 1984 (International Institute of Conservation, London, 1984), pp. 36–43

  36. D. Saunders, J. Kirby, Conservator 25, 95 (2001)

    Google Scholar 

  37. K.R. Millington, Color Technol. 122, 301 (2006)

  38. J.L. Reubsaet, J.H. Beijnen, A. Bult, R.J. van Maanen, J.A. Daniëlle Marchal, W.J. Underberg, J. Pharmaceut. Biomed. 17, 955 (1998)

  39. J. Fontecha, J. Bellanato, M. Juarez, J. Dairy Sci. 76, 11 (1993)

    Google Scholar 

  40. H. Jing, D.D. Kitts, Food Chem. Toxicol. 42, 11 (2004)

    Google Scholar 

  41. U. Tagami, S. Akashi, T. Mizukoshi, E. Suzuki, K. Hirayama, J. Mass Spectrom. 35, 2 (2000)

    Google Scholar 

  42. D.G. Dyer, J.A. Blackledge, S.R. Thorpe, J.W. Baynes, J. Biol. Chem. 266, 18 (1991)

    Google Scholar 

  43. C. Cantor, P. Schimmel, Biophysical Chemistry, Part 1: The Conformation of Biological Macromecules (Freeman, New York, 1980)

    Google Scholar 

  44. C. Giulivi, N.J. Traaseth, K.J.A. Davies, Amino Acids 25, 3 (2003)

    Google Scholar 

  45. L. Campbell, V. Raikos, S.R. Euston, Nahrung 47, 6 (2003)

    Google Scholar 

  46. R. Karoui, B. Kemps, F. Bamelis, B. De Ketelaere, K. Merten, R. Schoonheydt, E. Decuypere, J. De Baerdemaeker, Eur. Food Res. Technol. 223, 303 (2006)

    Google Scholar 

  47. R. Karoui, B. Kemps, F. Bamelis, B. De Ketelaere, K. Merten, R. Schoonheydt, E. Decuypere, J. De Baerdemaeker, Eur. Food Res. Technol. 223, 180 (2006)

    Google Scholar 

  48. E.R. de la Rie, Stud. Conserv. 27, 3 (1982)

    Google Scholar 

  49. T. Miyoshi, Japan. J. Appl. Phys. 24, 3 (1985)

    Article  Google Scholar 

  50. J. Van Der Weerd, A. Van Loon, J.J. Boon, Stud. Conserv. 50, 1 (2005)

    Google Scholar 

  51. O.F. van den Brink, Molecular Changes in Egg Tempera Paint Dosimeters as Tools to Monitor the Museum Environment, Ph.D. thesis, University of Amsterdam (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nevin.

Additional information

PACS

33.50.Dq; 87.15.Mi; 87.14.Cc; 87.14.Ee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevin, A., Anglos, D., Cather, S. et al. The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media. Appl. Phys. A 92, 69–76 (2008). https://doi.org/10.1007/s00339-008-4460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4460-z

Keywords

Navigation