Skip to main content
Log in

Rapid screening of active ingredients in drugs by mass spectrometry with low-temperature plasma probe

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A high-throughput method for rapid screening of active ingredients in drugs has been developed with mass spectrometry coupled to a low-temperature plasma (LTP) probe ion source. Without sample preparation or pretreatment, the active ingredients of 11 types of commercial pharmaceuticals, including hormones, antipyretic analgesics, cardiovascular, digestant, neuro-psychotherapeutic, diuretic, antithyroid, sulfa anti-inflammatory, antiparastic, sedative-hypnotics, and antibacterial, were directly desorbed/ionized and detected by a linear ion trap mass spectrometry (MS). The structures of these ingredients were elucidated by tandem MS. The analysis of 18 methyltestosterone tablets could be accomplished within 1.9 min, which allows fast detection with a speed of approximate 600 samples within 1 h. This work demonstrated that LTP probe ion source combined with MS is a high-throughput method for screening of pharmaceuticals and potentially applied to on-line quality control in pharmaceutical industry.

Schematic diagram of LTP probe for ambient ionization MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gorog S (2008) J Pharm Biomed Anal 48:247–253

    Article  CAS  Google Scholar 

  2. Jonathan P, Williams JHS (2005) Rapid Commun Mass Spectrom 19:3643–3650

    Article  Google Scholar 

  3. Rubin AE, Tummala S, Both DA, Wang C, Delaney EJ (2006) Chem Rev 106:2794–2810

    Article  CAS  Google Scholar 

  4. Hsieh Y, Fukuda E, Wingate J, Korfmacher WA (2006) Comb Chem High Throughput Screen 9:3–8

    Article  CAS  Google Scholar 

  5. Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) PNAS 105:18120–18125

    Article  Google Scholar 

  6. Leuthold LA, Mandscheff JF, Fathi M, Giroud C, Augsburger M, Varesio E, Hopfgartner G (2006) Rapid Commun Mass Spectrom 20:103–110

    Article  CAS  Google Scholar 

  7. An JG, Sun MJ, Bai L, Chen T, Liu DQ, Kord A (2008) J Pharm Biomed Anal 48:1006–1010

    Article  CAS  Google Scholar 

  8. Venter A, Nefliu M, Cooks RG (2008) Trac-Trends Anal Chem 27:284–290

    Article  CAS  Google Scholar 

  9. Van Berkel GJ, Pasilis SP, Ovchinnikova O (2008) J Mass Spectrom 43:1161–1180

    Article  Google Scholar 

  10. Busch KL (1995) J Mass Spectrom 30:233–240

    Article  CAS  Google Scholar 

  11. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Science 306:471–473

    Article  CAS  Google Scholar 

  12. Chen HW, Talaty NN, Takats Z, Cooks RG (2005) Anal Chem 77:6915–6927

    Article  CAS  Google Scholar 

  13. Ma XX, Zhao MX, Lin ZQ, Zhang SC, Yang CD, Zhang XR (2008) Anal Chem 80:6131–6136

    Article  CAS  Google Scholar 

  14. Cody RB, Laramee JA, Durst HD (2005) Anal Chem 77:2297–2302

    Article  CAS  Google Scholar 

  15. Takats Z, Cotte-Rodriguez I, Talaty N, Chen HW, Cooks RG (2005) Chem Commun (15): 1950-1952

  16. Ratcliffe LV, Rutten FJM, Barrett DA, Whitmore T, Seymour D, Greenwood C, Aranda-Gonzalvo Y, Robinson S, Mccoustrat M (2007) Anal Chem 79:6094–6101

    Article  CAS  Google Scholar 

  17. Na N, Zhao MX, Zhang SC, Yang CD, Zhang XR (2007) J Am Soc Mass Spectrom 18:1859–1862

    Article  CAS  Google Scholar 

  18. Na N, Zhang C, Zhao MX, Zhang SC, Yang CD, Fang X, Zhang XR (2007) J Mass Spectrom 42:1079–1085

    Article  CAS  Google Scholar 

  19. Hu QZ, Talaty N, Noll RJ, Cooks RG (2006) Rapid Commun Mass Spectrom 20:3403–3408

    Article  CAS  Google Scholar 

  20. Cotte-Rodriguez I, Chen H, Cooks RG (2006) Chem Commun (9): 953-955

  21. Kauppila TJ, Talaty N, Kuuranne T, Kotiaho T, Kostiainen R, Cooks RG (2007) Analyst 132:868–875

    Article  CAS  Google Scholar 

  22. Harper JD, Charipar NA, Mulligan CC, Zhang X, Cooks RG, Ouyang Z (2008) Anal Chem 80:9097–9104

    Article  CAS  Google Scholar 

  23. Zhang Y, Ma XX, Zhang SC, Yang CD, Zhang XR (2009) Analyst 134:176–181

    Article  CAS  Google Scholar 

  24. Luo HY, Liang Z, Wang XX, Guan ZC, Wang LM (2008) J Phys D-Appl Phys 41(20):20520

    Google Scholar 

  25. Takats Z, Wiseman JM, Cooks RG (2005) J Mass Spectrom 40:1261–1275

    Article  CAS  Google Scholar 

  26. Williams JP, Patel VJ, Holland R, Scrivens JH (2006) Rapid Commun Mass Spectrom 20:1447–1456

    Article  CAS  Google Scholar 

  27. Tian Y, Zhang JJ, Lin H, Liang JB, Zhang ZJ, Chen Y (2008) J Pharm Biomed Anal 47:899–906

    Article  CAS  Google Scholar 

  28. Chen XY, Zhao LY, Xu HY, Zhong DF (2004) J Pharm Biomed Anal 35:829–836

    Article  CAS  Google Scholar 

  29. Tuomi T, Johnsson T, Reijula K (1999) Clin Chem 45:2164–2172

    CAS  Google Scholar 

  30. Croubels S, Wassink P, De Backer P (2002) Anal Chim Acta 473:183–194

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by grants from the Innovation Method Fund of China (No. 2008IM040600) and NSFC (Nos. 20875053 and 20535020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinrong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 94.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Lin, Z., Zhang, S. et al. Rapid screening of active ingredients in drugs by mass spectrometry with low-temperature plasma probe. Anal Bioanal Chem 395, 591–599 (2009). https://doi.org/10.1007/s00216-009-2947-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2947-x

Keywords

Navigation