Skip to main content
Log in

Real-time trace detection of security-relevant compounds in complex sample matrices by thermal desorption–single photon ionization–ion trap mass spectrometry (TD-SPI-ITMS) Spectrometry (TD-SPI-ITMS)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

For the detection of security-relevant substances at low concentrations in complex matrices, coupling of thermal desorption–single photon ionization–ion trap mass spectrometry (TD-SPI-ITMS) was successfully tested. The main advantage of taking solid samples with a wipe pad followed by thermal desorption is the low detection limit by enhanced vapor pressure. Single photon ionization is a soft ionization technique which reduces the target ion fragmentation and shields bulk components with high ionization energies (IE) like nitrogen yielding to clearly arranged mass spectra with significant high mass peaks. To obtain low false-positive and false-negative rates, especially necessary for security-relevant substances, the ion trap mass spectrometer allows identification of signals with MS/MS studies. In this concept, the soft ionization technique fits well with the MS/MS studies, as peaks with high masses are generated yielding significant MS/MS fragments. For the ionization, photon energies between about 8 eV (155 nm) and 12 eV (103 nm) were generated with electron-beam-pumped rare gas excimer lamps (EBEL). Depending on the rare gas used, light with different photon energy is generated, adapted to the substances of interest. So, even most narcotics, having relatively low IEs, can be ionized with 8.4 eV photons without massive fragmentation. For most explosives, photons with higher energy must be used as their IEs are higher. In this work, a mobile setup with a commercial ion trap mass spectrometer has been developed and tested. Even a first real-scenario measurement campaign was accomplished successfully proving the field-suitability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hanson D (2005) Right in your backyard: identifying illegal drug labs lurking in the shadows. Law Enforc Technol 32:8–16

    Google Scholar 

  2. Pella PA (1977) Measurement of the vapor pressures of TNT, 2, 4-DNT, 2, 6-DNT, and EGDN. J Chem Thermodyn 9:301–305

    Article  CAS  Google Scholar 

  3. Kanu AB, Hill HH, (2004). Ion Mobility Spectrometry: Recent Developments and Novel Applications. LabPlus International April/May: 20-26.

  4. Jiménez AM, Navas MJ (2004) Chemiluminescence detection systems for the analysis of explosives. J Hazard Mater 106:1–8

    Article  Google Scholar 

  5. Wise MB, CVT RM, Guerin MR (1997) Review of direct MS analysis of environmental samples. Field Anal Chem Technol 1:251–276

    Article  CAS  Google Scholar 

  6. Yinon J (2002) Field detection and monitoring of explosives. TrAC, Trends Anal Chem 21:292–301

    Article  CAS  Google Scholar 

  7. Bauer C, Sharma AK, Willer U, Burgmeier J, Braunschweig B, Schade W, Blaser S, Hvozdara L, Müller A, Holl G (2008) Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives. Appl Phys, B Lasers Opt 92:327–333

    Article  CAS  Google Scholar 

  8. Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54:487–500

    Article  CAS  Google Scholar 

  9. Nambayah M, Quickenden TI (2004) A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals. Talanta 63:461–467

    Article  CAS  Google Scholar 

  10. Moore DS (2004) Instrumentation for trace detection of high explosives. Rev Sci Instrum 75:2499–2512

    Article  CAS  Google Scholar 

  11. Steinfeld JI, Wormhoudt J, (1998). EXPLOSIVES DETECTION: A Challenge for Physical Chemistry. Annual Review of Physical Chemistry 49: 203 LP - 232.

    Google Scholar 

  12. Shi YJ, Lipson RH (2005) An overview of organic molecule soft ionization using vacuum ultraviolet laser radiation. Can J Chem 83:1891–1902

    Article  CAS  Google Scholar 

  13. Butcher DJ (1999) Vacuum ultraviolet radiation for single-photoionization mass spectrometry: a review. Microchem J 62:354–362

    Article  CAS  Google Scholar 

  14. March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32:351–369

    Article  CAS  Google Scholar 

  15. March JFJT RE (1995) Practical Aspects of Ion Trap Mass Spectrometry/ Fundamentals of Ion Trap Mass Spectrometry. CRC, New York

    Google Scholar 

  16. March RE, Hughes RJ (1989) Quadrupole storage mass spectrometry. Wiley, New York

    Google Scholar 

  17. Schramm E, Kuerten A, Hoelzer J, Mitschke S, Muehlberger F, Sklorz M, Wieser J, Ulrich A, Puetz M, Schulte-Ladbeck R, Schultze R, Curtius J, Borrmann S, Zimmermann R, (2009). Trace Detection of Organic Compounds in Complex Sample Matrixes by Single-Photon Ionization Ion Trap Mass Spectrometry: Real-Time Detection of Security-Relevant Compounds and Online Analysis of the Coffee-Roasting Process. Anal Chem 81(11):4456–4467.

    Article  CAS  Google Scholar 

  18. Butcher DJ, Goeringer DE, Hurst GB (1999) Real-time determination of aromatics in automobile exhaust by single-photon ionization ion trap mass spectrometry. Anal Chem 71:489–496

    Article  CAS  Google Scholar 

  19. Hanna SJ, Campuzano-Jost P, Simpson EA, Robb DB, Burak I, Blades MW, Hepburn JW, Bertram AK (2009) A new broadly tunable (7.4–10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry. Int J Mass Spectrom 279:134–146

    Article  CAS  Google Scholar 

  20. Tsuruga S, Futami H, Yamakoshi H, Danno M, Yamashita I, Kuribayashi S (2004) Real-time measurement of trichlorobenzene of dioxin precursor in an incinerator exhaust by vacuum ultraviolet light ion trap/ionization TOFMS. J Mass Spectrom Soc Jpn 52:295–300

    CAS  Google Scholar 

  21. Kuribayashi S, Yamakoshi H, Danno M, Sakai S, Tsuruga S, Futami H, Morii S (2005) VUV single-photon ionization ion trap time-of-flight mass spectrometer for on-line, real-time monitoring of chlorinated organic compounds in waste incineration flue gas. Anal Chem 77:1007–1012

    Article  CAS  Google Scholar 

  22. Tsuruga S, Suzuki T, Takatsudo Y, Seki K, Yamauchi U, Kuribayashi H, Morii S (2007) On-line Monitoring System of P5CDF Homologues in Waste Incineration Plants Using VUV-SPI-IT-TOFMS. Environ. Sci. Technol. 41:3684–3688

    Article  CAS  Google Scholar 

  23. Short LC, Cai S-S, Syage JA (2007) APPI-MS: effects of mobile phases and VUV lamps on the detection of PAH compounds. J Am Soc Mass Spectr 18:589–599

    Article  CAS  Google Scholar 

  24. Syage JA (2004) Mechanism of [M + H]+ formation in photoionization mass spectrometry. J Am Soc Mass Spectr 15:1521–1533

    Article  CAS  Google Scholar 

  25. Andrea Raffaelli AS (2003) Atmospheric pressure photoionization mass spectrometry. Mass Spectrom Rev 22:318–331

    Article  Google Scholar 

  26. Syage JA, Hanold KA, Lynn TC, Horner JA, Thakur RA (2004) Atmospheric pressure photoionization: II. Dual source ionization. J Chromatogr A 1050:137–149

    CAS  Google Scholar 

  27. Mullen C, Irwin A, Pond BV, Huestis DL, Coggiola MJ, Oser H (2006) Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry. Anal Chem 78:3807–3814

    Article  CAS  Google Scholar 

  28. Pond BV, Mullen C, Suarez I, Kessler J, Briggs K, Young SE, Coggiola MJ, Crosley DR, Oser H (2007) Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry. Appl Phys, B Lasers Opt 86:735–742

    Article  CAS  Google Scholar 

  29. El-Habachi A, Schoenbach KH (1998) Emission of excimer radiation from direct current, high-pressure hollow cathode discharges. Appl Phys Lett 72:22–24

    Article  CAS  Google Scholar 

  30. Mühlberger F, Wieser J, Ulrich A, Zimmermann R (2002) Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis. Anal Chem 74:3790–3801

    Article  Google Scholar 

  31. Schramm E, Mühlberger F, Mitschke S, Reichardt G, Schulte-Ladbeck R, Pütz M, Zimmermann R (2008) Determination of the ionization potentials of security-relevant substances with single photon ionization mass spectrometry using synchrotron radiation. Appl Spectrosc 62:238–247

    Article  CAS  Google Scholar 

  32. Mallard WG, Linstrom PJ, (2000). NIST Chemistry WebBook, NIST Standard Reference Database. http://webbook.nist.gov/chemistry: National Institute of Standards and Technology (NIST).

  33. Saraji-Bozorgzad M, Geißler R, Streibel T, Mühlberger F, Sklorz M, Kaisersberger E, Denner T, Zimmermann R (2008) Thermogravimetry coupled to single photon ionization quadrupole mass spectrometry: a tool to investigate the chemical signature of thermal decomposition of polymeric materials. Anal Chem 80:3393–3403

    Article  CAS  Google Scholar 

  34. Mühlberger F, Saraji-Bozorgzad M, Gonin M, Fuhrer K, Zimmermann R (2007) Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source. Anal Chem 79:8118–8124

    Article  Google Scholar 

  35. Ouyang Z, Noll RJ, Cooks RG (2009) Handheld miniature ion trap mass spectrometers. Anal Chem 81:2421–2425

    Article  CAS  Google Scholar 

  36. Schnelle-Kreis J, Sklorz M, Peters A, Cyrys J, Zimmermann R (2005) Analysis of particle-associated semi-volatile aromatic and aliphatic hydrocarbons in urban particulate matter on a daily basis. Atmos Environ 39:7702–7714

    CAS  Google Scholar 

  37. Streibel T, Weh J, Mitschke S, Zimmermann R (2006) Thermal desorption/pyrolysis coupled with photo ionization time-of-flight mass spectrometry (PI-MS) for the analysis of molecular organic compounds as well as oligomeric and polygomeric fractions in urban particulate matter. Anal Chem 78:5354–5361

    Article  CAS  Google Scholar 

  38. Mühlberger F, Streibel T, Wieser J, Ulrich A, Zimmermann R (2005) Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: Setup and first results on cigarette smoke and human breath. Anal Chem 77:7408–7414

    Article  Google Scholar 

  39. Williams BA, Tanada TN, Cool TA, (1992). Resonance Ionization Detection Limits for Hazardous Emissions. 24th Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1587-1596.

Download references

Acknowledgements

We gratefully acknowledge the funding of the project by the German Federal Ministry of Education and Research (BMBF) (FKZ 13N8820) and the good scientific cooperation with Varian Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, E., Hölzer, J., Pütz, M. et al. Real-time trace detection of security-relevant compounds in complex sample matrices by thermal desorption–single photon ionization–ion trap mass spectrometry (TD-SPI-ITMS) Spectrometry (TD-SPI-ITMS). Anal Bioanal Chem 395, 1795–1807 (2009). https://doi.org/10.1007/s00216-009-2916-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2916-4

Keywords

Navigation