Skip to main content
Log in

Determination of tetracycline residues in soil by pressurized liquid extraction and liquid chromatography tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An optimized extraction and cleanup method for the analysis of chlortetracycline (CTC), doxycycline (DC), oxytetracycline (OTC) and tetracycline (TC) in soil is presented. Soil extraction in a pressurized liquid extraction system, followed by extract clean up using solid-phase extraction (SPE) and tetracycline determination by liquid chromatography tandem mass spectrometry (LC-MS/MS) provided appropriate efficiency and reproducibility. Different dispersing agents and solvents for soil extraction and several SPE cartridges for cleanup were compared. The best extraction results were obtained using ethylenediamine tetraacetic acid-treated sand as dispersing agent, and water at 70 °C. The most effective cleanup was obtained using Strata-XTM sorbent in combination with a strong anion exchange cartridge. Recoveries ranged from 71% to 96% and precision, as indicated by the relative standard deviations, was within the range of 8–15%. The limits of quantification (LOQs) by using LC-MS/MS, based on signal-to-noise ratio (S/N) of 10, ranged from 1 μg kg−1 for TC to 5 μg kg−1 for CTC. These results pointed out that this technique is appropriate to determine tetracyclines in soils. Analysis of 100 samples taken in the Valencian Community revealed that, in soil, up to 5 μg kg−1 CTC, 15 μg kg−1 OTC, 18 μg kg−1 TC, and 12 μg kg−1 DC could be detected. Detection of the analytes in several samples, which typify great part of the Spanish agricultural soils, should be outlined as most important result of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barcelo D (2007) Trac-Trends Anal Chem 26:454–455

    Article  CAS  Google Scholar 

  2. Petrovic M, Barcelo D (2007) Trac-Trends Anal Chem 26:486–493

    Article  CAS  Google Scholar 

  3. Andreu V, Blasco C, Pico Y (2007) Trac-Trends Anal Chem 26:534–556

    Article  CAS  Google Scholar 

  4. Pico Y, Andreu V (2007) Anal Bioanal Chem 387:1287–1299

    Article  CAS  Google Scholar 

  5. Davis JG, Truman CC, Kim SC, Ascough JC, Carlson K (2006) J Environ Qual 35:2250–2260

    Article  CAS  Google Scholar 

  6. Kumar K, Gupta SC, Chander Y, Singh AK (2005) Adv Agron 87:1–54

    Article  CAS  Google Scholar 

  7. O’Connor S, Aga DS (2007) Trac-Trends Anal Chem 26:456–465

    Article  Google Scholar 

  8. Kuster M, de Alda MJ, Hernando MD, Petrovic M, Martin-Alonso J, Barcelo D (2008) J Hydrol 358:112–123

    Article  CAS  Google Scholar 

  9. Gros B, Pizzolato TM, Petrovic M, de Alda MJL, Barcelo D (2008) J Chromatogr A 1189:374–384

    Article  CAS  Google Scholar 

  10. Besse JP, Kausch-Barreto C, Garric J (2008) Hum Ecol Risk Assess 14:665–695

    Article  CAS  Google Scholar 

  11. Shlaes DM (2006) Curr Opin Invest Drugs 7:167–171

    CAS  Google Scholar 

  12. Hamscher G, Sczesny S, bu-Qare A, Hoper H, Nau H (2000) Deut Tierarztl Woch 107:332–334

    CAS  Google Scholar 

  13. Martinez-Carballo E, Gonzalez-Barreiro C, Scharf S, Gans O (2007) Environ Pollut 148:570–579

    Article  CAS  Google Scholar 

  14. Hamscher G, Pawelzick HT, Hoper H, Nau H (2005) Environ Toxicol Chem 24:861–868

    Article  CAS  Google Scholar 

  15. Aga DS, O’Connor S, Ensley S, Payero JO, Snow D, Tarkalson D (2005) J Agric Food Chem 53:7165–7171

    Article  CAS  Google Scholar 

  16. De Liguoro M, Cibin V, Capolongo F, Halling-Sorensen B, Montesissa C (2003) Chemosphere 52:203–212

    Article  Google Scholar 

  17. Sassman SA, Lee LS (2005) Environ Sci Technol 39:7452–7459

    Article  CAS  Google Scholar 

  18. Figueroa RA, Leonard A, Mackay AA (2004) Environ Sci Technol 38:476–483

    Article  CAS  Google Scholar 

  19. Pils JRV, Laird DA (2007) Environ Sci Technol 41:1928–1933

    Article  CAS  Google Scholar 

  20. Wang YJ, Jia DA, Sun RJ, Zhu HW, Zhou DM (2008) Environ Sci Technol 42:3254–3259

    Article  CAS  Google Scholar 

  21. Lutz F, Alber J (2004) Tierarztl Prax 32:180–190

    Google Scholar 

  22. Hamscher G, Sczesny S, Hoper H, Nau H (2002) Anal Chem 74:1509–1518

    Article  CAS  Google Scholar 

  23. Aga DS, Goldfish R, Kulshrestha P (2003) Analyst 128:658–662

    Article  CAS  Google Scholar 

  24. O’Connor S, Locke J, Aga DS (2007) J Environ Monit 9:1254–1262

    Article  Google Scholar 

  25. Jacobsen AM, Halling-Sorensen B, Ingerslev F, Hansen SH (2004) J Chromatogr A 1038:157–170

    Article  CAS  Google Scholar 

  26. Blasco C, Torres CM, Pico Y (2007) Trac-Trends Anal Chem 26:895–913

    Article  CAS  Google Scholar 

  27. Carretero V, Blasco C, Pico Y (2008) J Chromatogr A 1209:162–173

    Article  CAS  Google Scholar 

  28. Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P, Hernández-Méndez J (2005) J Chromatogr A 1089:1–17

    Article  Google Scholar 

  29. De la Cal A, Eljarrat E, Barcelo D (2003) J Chromatogr A 1021:165–173

    Article  Google Scholar 

  30. Andreu V, Ferrer E, Rubio JL, Font G, Pico Y (2007) Sci Total Environ 378:124–129

    Article  CAS  Google Scholar 

  31. Hamscher G, Priess B, Nau H (2006) Arch Lebensm Hyg 57:97–101

    CAS  Google Scholar 

  32. Bogialli S, Curini R, Di Corcia A, Lagana A, Rizzuti G (2006) J Agric Food Chem 54:1564–1570

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Spanish Ministry of Science and Innovation together with the European Regional Development Funds (ERDF; projects GCL2007-66687-C02-01/BOS, CGL2007-66687-C02-02 and CGL2008-01693/BTE), the Conselleria d’Empresa, Universitat i Ciència through an R+D project for emerging research groups (GV/2007/264), and the Conselleria de Sanitat (project EVES2008-011) for financial support. P.V.R thanks the Spanish Ministry of Science and Innovation for the FPI grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Picó.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

Physico chemical characteristics of the soil samples (DOC 159 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreu, V., Vazquez-Roig, P., Blasco, C. et al. Determination of tetracycline residues in soil by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 394, 1329–1339 (2009). https://doi.org/10.1007/s00216-009-2635-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2635-x

Keywords

Navigation