Skip to main content
Log in

Fast-scan cyclic voltammetry for the detection of tyramine and octopamine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Tyramine and octopamine are biogenic amine neurotransmitters in invertebrates that have functions analogous to those of the adrenergic system in vertebrates. Trace amounts of these neurotransmitters have also been identified in mammals. The purpose of this study was to develop an electrochemical method using fast-scan cyclic voltammetry at carbon-fiber microelectrodes to detect fast changes in tyramine and octopamine. Because tyramine is known to polymerize and passivate electrode surfaces, waveform parameters were optimized to prevent passivation. No fouling was observed for octopamine when the electrode was scanned from 0.1 to 1.3 V and back at 600 V/s, while a small decrease of less than 10% of the signal was seen for 15 repeated exposures to tyramine. The technique has limits of detection of 18 nM for tyramine and 30 nM for octopamine, much lower than expected levels in insects and lower than basal levels in some brain regions of mammals. Current was linear with concentration up to 5 μM. This voltammetry technique should be useful for measuring tyramine and octopamine changes in insects, such as the fruit fly, Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roeder T (2005) Annu Rev Entomol 50:447–477

    Article  CAS  Google Scholar 

  2. Roeder T (1999) Prog Neurobiol 59:533–561

    Article  CAS  Google Scholar 

  3. Wragg RT, Hapiak V, Miller SB, Harris GP, Gray J, Komuniecki PR, Komuniecki RW (2007) J Neurosci 27:13402–13412

    Article  CAS  Google Scholar 

  4. McClung C Hirsh J (1999) Curr Biol 9:853–860

    Article  Google Scholar 

  5. Cazzamali G, Klaerke DA, Grimmelikhuijzen CJ (2005) Biochem Biophys Res Commun 338:1189–1196

    Article  CAS  Google Scholar 

  6. Evans PD, Maqueira B (2005) Invert Neurosci 5:111–118

    Article  CAS  Google Scholar 

  7. Berry MD (2004) J Neurochem 90:257–271

    Article  CAS  Google Scholar 

  8. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Proc Natl Acad Sci USA 98:8966–8971

    Article  CAS  Google Scholar 

  9. Molinoff PB, Axelrod J (1972) J Neurochem 19:157–163

    Article  CAS  Google Scholar 

  10. Boulton AA (1976) Adv Biochem Psychopharmacol 15:57–67

    CAS  Google Scholar 

  11. Monastirioti M, Gorczyca M, Rapus J, Eckert M, White K, Budnik V (1995) J Comp Neurol 356:275–287

    Article  CAS  Google Scholar 

  12. Hardie SL, Hirsh J (2006) J Neurosci Methods 153:243–249

    Article  CAS  Google Scholar 

  13. Paxon TL, Powell PR, Lee HG, Han KA, Ewing AG (2005) Anal Chem 77:5349–5355

    Article  CAS  Google Scholar 

  14. de Castro CM, Vieira SN, Goncalves RA, Brito-Madurro AG, Madurro JM (2008) J Mater Sci 43:475–482

    Article  CAS  Google Scholar 

  15. Tenreiro AM, Nabais C, Correia JP, Fernandes FMSS, Romero JR, Abrantes LM (2007) J Solid State Electrochem 11:1059–1069

    Article  CAS  Google Scholar 

  16. Pham MC, Lacaze PC, Dubois JE (1984) J Electrochem Soc 131:777–784

    Article  CAS  Google Scholar 

  17. Luczak T (2008) J App Electrochem 38:43–50

    Article  CAS  Google Scholar 

  18. Durden DA, Philips SR (1980) J Neurochem 34:1725–1732

    Article  CAS  Google Scholar 

  19. Venton BJ, Wightman RM (2003) Anal Chem 75:414A–421A

    Article  CAS  Google Scholar 

  20. Borue X, Venton BJ (2008) In: Abstracts of monitoring molecules in neuroscience. 12th international conference on in vivo methods, University of British Columbia, Vancouver, 10–14 Aug 2008, pp 427–429

  21. Makos M, Kuklinski N.M, Han KA, Ewing AG (2008) In: Abstracts of monitoring molecules in neuroscience. 12th international conference on in vivo methods, University of British Columbia, Vancouver, 10–14 Aug 2008, p 439

  22. Sykes PA, Condron BG (2005) Dev Biol 286:207–216

    Article  CAS  Google Scholar 

  23. Swamy BEK, Venton BJ (2007) Anal Chem 79:744–750

    Article  CAS  Google Scholar 

  24. Heien ML, Johnson MA, Wightman RM (2004) Anal Chem 76:5697–5704

    Article  CAS  Google Scholar 

  25. Strand AM, Venton BJ (2008) Anal Chem 80:3708–3715

    Article  CAS  Google Scholar 

  26. Baur JE, Kristensen EW, May LJ, Wiedemann DJ, Wightman RM (1988) Anal Chem 60:1268–1272

    Article  CAS  Google Scholar 

  27. Dubois JE, Lacaze PC, Pham MC (1981) J Electroanal Chem 117:233–241

    Article  CAS  Google Scholar 

  28. Situmorang M, Gooding JJ, Hibbert DB, Barnett D (1998) Biosens Bioelectron 13:953–962

    Article  CAS  Google Scholar 

  29. Bath BD, Michael DJ, Trafton BJ, Joseph JD, Runnels PL, Wightman RM (2000) Anal Chem 72:5994–6002

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was support by a grant from the National Science Foundation (CHE 0645587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jill Venton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, S.E., Venton, B.J. Fast-scan cyclic voltammetry for the detection of tyramine and octopamine. Anal Bioanal Chem 394, 329–336 (2009). https://doi.org/10.1007/s00216-009-2616-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2616-0

Keywords

Navigation