Skip to main content
Log in

Liquid chromatography under critical conditions: Practical applications in the analysis of amphiphilic polymers

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Liquid chromatography under critical conditions (LCCC) allows the separation of block copolymers from the corresponding homopolymers as well as the separation of homopolymers according to their functionality. At the transition of exclusion and adsorption mode, the polymer chain becomes “chromatographically invisible,” and thus a separation according to other structural units can be achieved. In the case of block copolymers this situation can be utilized to detect and determine unwanted homopolymers. At critical conditions for the repeat unit, the other block may be eluted in the exclusion or the adsorption regime. In the first case, the block copolymer is eluted before the homopolymer, and its molar mass can be determined as in size-exclusion chromatography. In the second case, it is eluted later than the homopolymer, and the separation of the individual oligomers can be achieved. Advantages and limitations of different approaches in LCCC are discussed.

Application of LCCC in the characterization of polypropylene glycol and its block copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gorbunov AA, Solovyova LY, Skvortsov AM (1998) Polymer 39:697

    Article  CAS  Google Scholar 

  2. Gorbunov AA, Skvortsov AM (1988) Vysokomol Soedin Ser A 30:895

    CAS  Google Scholar 

  3. Skvortsov AM, Gorbunov AA (1990) J Chromatogr 507:487

    Article  CAS  Google Scholar 

  4. Belenkii BG, Gankina ES, Zgonnik VN et al (1992) J Chromatogr 609:355

    Article  CAS  Google Scholar 

  5. Pasch H (1996) Macromol Symp 110:107

    CAS  Google Scholar 

  6. Malik MI, Trathnigg B, Kappe CO (2008) Eur Polym J 44:144–154

    Article  CAS  Google Scholar 

  7. Malik MI, Trathnigg B, Kappe CO (2007) Macromol Chem Phys 208:2510

    Article  CAS  Google Scholar 

  8. Pasch H, Zammert I (1994) J Liq Chromatogr 17:3091

    Article  CAS  Google Scholar 

  9. Gorshkov AV, Much H, Becker H et al (1990) J Chromatogr 523:91

    Article  CAS  Google Scholar 

  10. Skvortsov AM, Gorbunov AA, Berek D et al (1998) Polymer 39:423

    Article  CAS  Google Scholar 

  11. Malik MI, Trathnigg B, Kappe CO (2008) Eur Polym J. doi:10.1016/j.eurpolymj.2008.11.035

  12. Piao L, Dai Z, Deng M et al (2003) Polymer 44:2025

    Article  CAS  Google Scholar 

  13. Tirelli N, Lutolf MP, Napoli A et al (2002) Rev Mol Biotechnol 90:3

    Article  CAS  Google Scholar 

  14. Lee JH, Lee HB, Andrade JD (1995) Progr Polym Sci 20:1043

    Article  CAS  Google Scholar 

  15. Sundarrajan S, Surianarayanan M, Srinivasan KSV et al (2002) Macromolecules 35:3331

    Article  CAS  Google Scholar 

  16. Kaal ER, Kurano M, Geißler M et al (2008) J Chromatogr A 1186:222

    Article  CAS  Google Scholar 

  17. Terrier P, Buchmann W, Desmazieres B et al (2006) Anal Chem 78:1801

    Article  CAS  Google Scholar 

  18. Guowei Wang JH (2008) J Polym Sci A Polym Chem 46:1136

    Article  Google Scholar 

  19. Lu X-F, Liu Z-Q, Xing J-P et al (2008) Gaodeng Xuexiao Huaxue Xuebao 29:1267

    CAS  Google Scholar 

  20. Trathnigg B (1990) J Liq Chromatogr 13:1731

    Article  CAS  Google Scholar 

  21. Trathnigg B (1991) J. Chromatogr 552:507

    Article  CAS  Google Scholar 

  22. Trathnigg B, Feichtenhofer S, Kollroser M (1997) J Chromatogr A 786:75

    Article  CAS  Google Scholar 

  23. Trathnigg B, Malik MI, Cuong NV et al (2008) J Chromatogr A 1207:122

    Article  CAS  Google Scholar 

  24. Trathnigg B, Gorbunov AA (2001) J Chromatogr A 910:207

    Article  CAS  Google Scholar 

  25. Trathnigg B (2001) J Chromatogr A 915:155

    Article  CAS  Google Scholar 

  26. Pasch H, Augenstein M (1993) Makromol Chem Macromol Chem Phys 194:2533

    CAS  Google Scholar 

  27. Pasch H, Gallot Y, Trathnigg B (1993) Polymer 34:4986

    Article  CAS  Google Scholar 

  28. Pasch H, Augenstein M, Trathnigg B (1994) Macromol Chem Phys 195:743

    Article  CAS  Google Scholar 

  29. Pasch H, Brinkmann C, Much H et al (1992) J Chromatogr A 623:315

    Article  CAS  Google Scholar 

  30. Batsberg W, Ndoni S, Trandum C et al (2004) Macromolecules 37:2965

    Article  CAS  Google Scholar 

  31. Trathnigg B (2005) Polymer 46:9211

    Article  CAS  Google Scholar 

  32. Trathnigg B, Gorbunov AA (2006) Macromol Symp 237:18

    Article  CAS  Google Scholar 

  33. Rappel C, Trathnigg B, Gorbunov AA (2003) J Chromatogr A 984:29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.I.M. and H.A. thank the Higher Education Commission (HEC) of Pakistan for a Ph.D. Scholarship. We also thank C. Oliver Kappe of CDLMC for his cooperation in the synthesis of most of the products used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Trathnigg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, M.I., Ahmed, H. & Trathnigg, B. Liquid chromatography under critical conditions: Practical applications in the analysis of amphiphilic polymers. Anal Bioanal Chem 393, 1797–1804 (2009). https://doi.org/10.1007/s00216-008-2590-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2590-y

Keywords

Navigation