Skip to main content
Log in

Epigenetics: an important challenge for ICP-MS in metallomics studies

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Trace metal analysis has been long regarded as one of the principle tasks in areas of chemical analysis. At the early stage of instrumental development, total concentration was assessed in a variety of samples, yielding results, among others, for environmental, biological, and clinical samples. With the power of newer analytical techniques, such as inductively coupled plasma mass spectrometry (ICP-MS), accurate quantitative results can now be obtained at ultra-trace levels not only for metals, but also for metalloids and several non-metals. Even though the importance of trace elements in many biological processes is widely accepted, the elucidation of their biological pathways, understanding specific biological functions, or possible toxicological aspects is still a challenge and a driving force to further develop analytical methodology. Over the past decades, the scientific interest has moved from total element determination to include speciation analysis, which provides quantitative information of one or more individual element species in a sample. More recently, metallomics has been introduced as a more expanded concept, in which the global role of all metal/metalloids in a given system is considered. Owing to the multi-elemental focus of metallomics research, the use of ICP-MS becomes indispensable. Furthermore, considering the biological role of metals/metalloids and the use of elements as internal or external molecular tags, epigenetics should be considered as an important emerging application for metallomics studies and approaches. Among a variety of epigenetic factors, essential nutrients, but also environmental toxins, have been shown to affect DNA methylation, modification of histone proteins, and RNA interference, all of them being implicated in cancer, cardiovascular disease, and several inherited conditions. Recent studies suggest that epigenetics may be a critical pathway by which metals produce health effects. In this Trends article, the basic epigenetic concepts are introduced, followed by the early applications of ICP-MS classified as: (i) detection of 31P as a natural element tag for DNA, (ii) analysis of DNA adducts with metal-based drugs, (iii) element species as epigenetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Caruso JA, Klaue B, Michalke B, Rocke DM (2003) Ecotoxicol Environ Saf 56:32–44

    Article  CAS  Google Scholar 

  2. Haraguchi H (2004) J Anal At Spectrom 19:5–14

    Article  CAS  Google Scholar 

  3. Szpunar J (2005) Analyst 130:442–465

    Article  CAS  Google Scholar 

  4. López-Barea J, Gómez-Ariza JL (2006) Proteomics 6:S51–S62

    Article  Google Scholar 

  5. Prange A, Profrock D (2008) J Anal At Spectrom 23:432–459

    Article  CAS  Google Scholar 

  6. Sutherland JE, Costa M (2003) Ann NY Acad Sci 983:151–160

    Article  CAS  Google Scholar 

  7. Laird PW (2005) Human Mol Genetics 14:R65–R76

    Article  CAS  Google Scholar 

  8. Johnson IT, Belshaw NJ (2008) Food Chem Toxicol 46:1346–1359

    Article  CAS  Google Scholar 

  9. Rodenhiser D, Mann M (2006) Can Med Assoc J 174:341–348

    Article  Google Scholar 

  10. Dueñas-Gonzalez A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E (2005) Mol Cancer 38–62

  11. Zhang AH, Bin HH, Pan XL, Xi XG (2007) J Toxicol Environ Health A 70:970–975

    Article  CAS  Google Scholar 

  12. Fieghl H, Elmasry K (2007) Dis Markers 23:89–96

    Google Scholar 

  13. Herzeg Z (2007) Mutagenesis 22:91–103

    Article  CAS  Google Scholar 

  14. Ferguson LR, Karunasinghe N, Philpott M (2004) Environ Mol Mutagen 44:36–43

    Article  CAS  Google Scholar 

  15. Salnikow K, Zhitkovich A (2008) Chem Res Toxicol 21:28–44

    Article  Google Scholar 

  16. Vahter M (2008) BCPT (Basic Clin Pharmacol Toxicol) 102:204–211

    CAS  Google Scholar 

  17. Brouwers EEM, Tibben M, Rosing H, Schellens JHM, Beijnen JH (2008) Mass Spectrom Rev 27:67–100

    Article  CAS  Google Scholar 

  18. Huang J, Hu X, Zhang J, Li K, Yan Y, Xu X (2006) J Pharm Biomed Anal 40:227–234

    Article  CAS  Google Scholar 

  19. Garcia Sar D, Montes-Bayon M, Aguado Ortiz L, Blanco Gonzalez E, Sierra LM, Sanz-Medel A (2008) Anal Bioanal Chem 390:37–44

    Article  CAS  Google Scholar 

  20. Zhou X, Sun H, Ellen TP, Chen H, Costa M (2008) Carcinogenesis 29:1831–1836

    Google Scholar 

  21. Fischer JM, Robbins SB, Al-Zoughool M, Kannamkumarath SS, Stringer SL, Larson JS, Caruso JA, Talaska G, Stambrook PJ, Stringer JR (2005) Mutat Res 588:35–46

    CAS  Google Scholar 

  22. Evans CD, LaDow K, Schumann BL, Savage RE Jr, Caruso JA, Vonderheide A, Succop P, Talaska G (2004) Carcinogenesis 25:493–497

    Article  CAS  Google Scholar 

  23. Wrobel K, Wrobel K, Caruso JA (2002) J Anal At Spectrom 17:1048–1054

    Article  CAS  Google Scholar 

  24. Sanz-Medel A, Montes Bayon M, Fernandez de la Campa MR, Ruiz Encinar J, Bettmer J (2008) Anal Bioanal Chem 390:3–16

    Article  CAS  Google Scholar 

  25. Siethoff C, Feldmann I, Jakubowski N, Linscheid M (1999) J Mass Spectrom 34:421–426

    Article  CAS  Google Scholar 

  26. Edler M, Jakubowski N, Linscheid M (2006) J Mass Spectrom 41:507–516

    Article  CAS  Google Scholar 

  27. Profrock D, Leonhard P, Prange A (2003) J Anal At Spectrom 18:708–713

    Article  CAS  Google Scholar 

  28. Garcia Sar D, Montes Bayon M, Blanco-Gonzalez E, Sanz-Medel A (2008) J Anal At Spectrom 21:861–868

    Article  CAS  Google Scholar 

  29. Heffeter P, Jungwirth U, Jakupec M, Hartinger C, Galanski M, Elbling L, Micksche M, Keppler B, Berger W (2008) Drug Resist Update 11:1–16

    Article  CAS  Google Scholar 

  30. Chekhun VF, Lukyanova NY, Kovalchuk O, Tryndyak VP, Pogribny IP (2007) Mol Cancer Therap 6:1089–1098

    Article  CAS  Google Scholar 

  31. Gronbaek K, Hother C, Jones AP (2007) APMIS 115:1039–1059

    Article  Google Scholar 

  32. Hartinger CG, Keppler BK (2007) Electrophoresis 28:3436–3446

    Article  CAS  Google Scholar 

  33. Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Chem Rev 106:2224–2248

    Article  CAS  Google Scholar 

  34. Francesconi KA, Kuehnelt D (2004) Analyst 129:373–395

    Article  CAS  Google Scholar 

  35. Dopp E, Hartmann LM, Florea AM, von Recklinghausen U, Pieper R, Shokouhi B, Rettenmeier AW, Hirner AV, Obe G (2004) Toxicol Appl Pharmacol 20:156–165

    Article  CAS  Google Scholar 

  36. Rabieh S, Hirner AV, Matschullat J (2008) J Anal At Spectrom 23:544–549

    Article  CAS  Google Scholar 

  37. Yathavakilla SKV, Fricke M, Creed PA, Heitkemper DT, Shockey NV, Schwegel C, Caruso JA, Creed JT (2008) Anal Chem 80:775–782

    Article  CAS  Google Scholar 

  38. Kajander EO, Pajula RL, Harvima RJ, Eloranta TO (1989) Anal Biochem 179:396–400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Caruso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wrobel, K., Wrobel, K. & Caruso, J.A. Epigenetics: an important challenge for ICP-MS in metallomics studies. Anal Bioanal Chem 393, 481–486 (2009). https://doi.org/10.1007/s00216-008-2472-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2472-3

Keywords

Navigation