Skip to main content

Advertisement

Log in

Titanium levels in the organs and blood of rats with a titanium implant, in the absence of wear, as determined by double-focusing ICP-MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Titanium (Ti) has long been regarded as an inert and biocompatible metal, ideal for biomedical applications such as dental implants or joint replacements. However, concerns about the biocompatibility of Ti have lately arisen. Unfortunately, information on reliable Ti baseline physiological levels in blood and organ tissues is still pending and the real effects of physiological corrosion as opposed to wear processes of Ti or Ti alloys implants is controversial so far. In this work a previously developed and validated methodology, based on using double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) has been used to establish Ti basal levels in blood and organs (heart, liver, spleen, kidneys, and lungs) of Wistar rats. These data were compared with the levels found in three Wistar rats implanted with a Ti wire embedded in their femur for 18 months, in order to assign possible Ti released purely due to non-wear physiological mechanisms. Results showed that Ti content in all the selected organ tissues and blood was higher than previously determined Ti basal levels, clearly showing both corrosion of the Ti implant and systemic Ti accumulation in target tissues. These results indicate that Ti metal corrosion occurs. This seems to be the only mechanism responsible in the long term for the observed passive dissolution of Ti of the implant in the absence of wear. A comparative study of the systemic distribution of the soluble and particulate Ti potentially released from Ti implants was also carried out by intraperitoneally injection of soluble Ti(citrate)3 and insoluble TiO2 particles, respectively. Different systemic Ti storage was observed. Whereas soluble Ti was rapidly transported to all distal organs under study, TiO2 particles were only accumulated in lung tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sargeant A, Goswami T (2007) Mater Design 28:155–171

    Article  CAS  Google Scholar 

  2. Sarmiento González A, Marchante Gayón JM, Tejerina Lobo JM, Paz Jiménez J, Sanz Medel A (2008) Anal Bioanal Chem 391:2583–2589

    Article  CAS  Google Scholar 

  3. Savarino L, Granchi D, Ciapetti G, Cenni E, Nardi Pantoli A, Rotini R, Veronesi CA (2002) J Biomed Mater Res 63:467–474

    Article  CAS  Google Scholar 

  4. Zeiner M, Zenz P, Lintner F, Schuster E, Schwägerl W, Steffan I (2007) Microchem J 85:145–148

    Article  CAS  Google Scholar 

  5. Jacobs JJ, Skipor AK, Patterson LM, Hallab NJ, Paprosky WG, Black J, Galante JO (1998) J Bone Joint Surg [Am] 80(A):1447–1458

    CAS  Google Scholar 

  6. McDonald SJ, McCalden RW, Chess DG, Bourne RB, Rorabeck CH, Cleland D (2003) Clin Rel Res 406:282–296

    Article  Google Scholar 

  7. Bagchi D, Stohs S, Downs B, Bagchi M, Preuss H (2002) Toxicology 180:5–22

    Article  CAS  Google Scholar 

  8. Liu K, Husler J, Ye J, Leonard S, Cutler D, Chen F (2001) Mol Cell Biochem 222(12):221–229

    Article  CAS  Google Scholar 

  9. Quievryn G, Peterson E, Messer J, Zhitkovich A (2003) Biochemistry 42(4):1062–1070

    Article  CAS  Google Scholar 

  10. Hallab NJ, Merritt K, Jacobs JJ (2001) J Bone Joint Surg [Am] 83A:428–436

    Google Scholar 

  11. Clohisy JC, Calvert G, Tull F, McDonald D, Maloney WJ (2004) Clin Orthop Relat Res 429:188–192

    Article  Google Scholar 

  12. Iavicoli I, Falcone G, Alessandrelli M, Cresti R, De Santis V, Salvatori S, Alimonti A, Carelli G (2006) J Trace Elem Med Biol 20:25–31

    Article  CAS  Google Scholar 

  13. Hanawa T (2004) Mater Sci Eng C 24:745–752

    Article  CAS  Google Scholar 

  14. Wang ML, Tuli R, Manner PA, Sharkey PF, Hall DJ, Tuan RS (2003) Orthop Res 4:697–707

    Article  CAS  Google Scholar 

  15. Olmedo DG, Tasat DR, Guglielmotti MB, Cabrini RL (2005) J Biomed Mater Res 73A:142–149

    Article  CAS  Google Scholar 

  16. Olmedo DG, Tasat DR, Guglielmotti MB, Cabrini RL (2008) J Mater Sci Mater Med 19:3049–3056

    Article  CAS  Google Scholar 

  17. Campbell PM, Urban RM, Catelas I, Skipor AK, Schmalzreid TP (2003) J Bone Joint Surg [Am] 85:2218–2222

    Google Scholar 

  18. Jacobs JJ, Skipor AK, Campbell A, Hallab NJ, Urban RM, Amstutz CJ (2004) Arthroplasty 19(8):59–65

    Article  Google Scholar 

  19. Bianco PD, Ducheyne P, Cuckler JM (1997) J Mater Sci Mater Med 8:525–529

    Article  CAS  Google Scholar 

  20. Bianco PD, Ducheyne P, Cuckler J (1996) Biomaterials 17:1937–1942

    Article  CAS  Google Scholar 

  21. Sarmiento González A, Marchante Gayón JM, Tejerina Lobo JM, Paz Jiménez J, Sanz Medel A (2005) Anal Bioanal Chem 382:1001–1009

    Article  CAS  Google Scholar 

  22. McGarry S, Morgan SJ, Grosskreuz RM, Williams AE, Smith WR (2008) J Trauma 64:430–433

    Article  CAS  Google Scholar 

  23. Savarino L, Greo M, Cenni E, Cavasinni L, Rotini R, Baldini N, Giunti A (2006) J Bone Joint Surg Br] 88B:472–476

    Article  Google Scholar 

  24. Ellison SLR, King B, Rösslein M, Salit M, Williams A (Lisbon, 2003) Traceability in Chemical Measurement. EURACHEM/CITAC Guide

  25. Deng F, Zhou ZH, Wan HL (2004) Inorg Chem 43:6266–6273

    Article  CAS  Google Scholar 

  26. Rubio JC, García-Alonso MC, Alonso C, Alobera MA, Clemente C, Munuera L, Escudero ML (2008) J Mater Sci Mater Med 19:369–375

    Article  CAS  Google Scholar 

  27. Rodríguez D, Gil FJ, Planell JA, Jorge E, Álvarez L, García R, Larrea M, Zapata A (1999) J Mater Sci Mater Med 10:847–851

    Article  Google Scholar 

  28. Olmedo D, Guglielmotti MB, Cabrini RL (2002) J Mater Sci Mater Med 13:793–796

    Article  CAS  Google Scholar 

  29. Dorr LD, Milton KR, Wan Z, Markovich GD, Bloebaum R (1996) Clin Orthop 333:108–117

    Google Scholar 

  30. O’Connor DT, Choi MG, Kwon SY, Paul Sung KL (2004) J Orthop Res 22:229–236

    Article  CAS  Google Scholar 

  31. Olmedo DG, Tasat DR, Guglielmotti MB, Cabrini RL (2003) J Mater Sci Mater Med 14:1099–1103

    Article  CAS  Google Scholar 

  32. Tinoco AD, Valentine AM (2005) J Am Chem Soc 127(32):11218–11219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the MEC (Madrid, Spain, CTQ2006-02309/BQU) and Applera Hispania (FUO-EM-023-05) is gratefully acknowledged. J.R.E. acknowledges the MEC and the European Social Fund for a Ramon y Cajal contract. The authors gratefully acknowledge Agustín Brea and Teresa Sánchez from the Biotery of the University of Oviedo for their help and kind suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Ruiz Encinar or Alfredo Sanz-Medel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmiento-González, A., Encinar, J.R., Marchante-Gayón, J.M. et al. Titanium levels in the organs and blood of rats with a titanium implant, in the absence of wear, as determined by double-focusing ICP-MS. Anal Bioanal Chem 393, 335–343 (2009). https://doi.org/10.1007/s00216-008-2449-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2449-2

Keywords

Navigation