Skip to main content

Advertisement

Log in

ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sector field high-resolution (HR)-ICP-MS and an octapole reaction system (ORS)-ICP-MS have been compared for the simultaneous determination of traces of metals (Ti, V, Cr, Co, Ni, and Mo) released from dental implants and articular prostheses in human biological fluids. Optimum sample treatments were evaluated to minimize matrix effects in urine and whole blood. Urine samples were diluted tenfold with ultrapure water, whereas whole blood samples were digested with high-purity nitric acid and hydrogen peroxide and finally diluted tenfold with ultrapure water. In both matrices, internal standardization (Ga and Y) was employed to avoid potential matrix interferences and ICP-MS signal drift. Spectral interferences arising from the plasma gases or the major components of urine and whole blood were identified by (HR)-ICP-MS at 3,000 resolving power. The capabilities of (HR)-ICP-MS and (ORS)-ICP-MS for the removal of such spectral interferences were evaluated and compared. Results indicate that polyatomic interferences, which hamper the determination of such metallic elements in these biological samples, could be overcome by using a resolving power of 3,000. Using (ORS)-ICP-MS, all those elements could be quantified except Ti and V (due to the polyatomic ions 31P16O and 35Cl16O, respectively). The accuracy of the proposed methodologies by (HR)- and (ORS)-ICP-MS was checked against two reference materials. Good agreement between the given values and the concentrations obtained for all the analytes under scrutiny was found except for Ti and V when analyzed by (ORS)-ICP-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haynes DR, Rogers SD, Pearcy MJ, Howie DW (1993) J Bone Joint Surg 75:825–834

    CAS  PubMed  Google Scholar 

  2. Lalor PA, Revell PA, Gray AB, Wright S, Railton GT, Freeman MAR (1991) J Bone Joint Surg 73:25–28

    CAS  Google Scholar 

  3. Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD, Pellicci PM, Bullough PG (1988) J Bone Joint Surg 70:347–356

    CAS  PubMed  Google Scholar 

  4. Black J, Sherk H, Bonini J, Rostoker WR, Schajowicz F, Galante JO (1990) J Bone Joint Surg 72:126–130

    CAS  PubMed  Google Scholar 

  5. Case CP, Langkamer VG, James C, Palmer MR, Kemp AJ, Heap PF, Solomon LJ (1994) J Bone Joint Surg [Br] 76:701–712

    CAS  Google Scholar 

  6. Black J, Maitin EC, Gelman H, Morris DM (1983) Biomaterials 4:160–164

    Article  CAS  PubMed  Google Scholar 

  7. Brown SA, Zhang K, Merritt K, Payer JH (1993) J Biomed Mater Res 27:1007–1017

    CAS  PubMed  Google Scholar 

  8. Jacobs JJ, Skipor AK, Black G, Urban RM, Galante JO (1991) J Bone Joint Surg [Am] 73:1475–1486

    CAS  Google Scholar 

  9. Sunderman FW Jr, Hoffer SM, Swift T, Rezake WM, Zebka L, Highman P et al (1989) J Orthop Res 7:307–315

    Article  CAS  PubMed  Google Scholar 

  10. Barany E, Bergdahk IA, Schütz A, Skerfving S, Oskarsson A (1997) J Anal At Spectrom 12:1005–1009

    Article  CAS  Google Scholar 

  11. Prohaska T, Köllensperger G, Krachler M, De Winne K, Stingeder G, Moens L (2000) J Anal At Spectrom 15:335–340

    Article  CAS  Google Scholar 

  12. Delves HT, Sieniawska CE, Fell GS, Lyon TDB, Dezateux C, Cullen A, Variend S, Bonham JR, Chantler SM (1997) Analyst 122:1323–1329

    Article  CAS  PubMed  Google Scholar 

  13. Evans EH, Giglio JJ (1993) J Anal At Spectrom 8:1–18

    Article  CAS  Google Scholar 

  14. Nixon DE, Moyer TP (1996) Spectrochim Acta 51B:13–25

    Article  Google Scholar 

  15. Tan SH, Horlick G (1987) J Anal At Spectrom 2:745–763

    Article  CAS  Google Scholar 

  16. Greb U, Rottmann L (1994) Labor Praxis 42:1–8

    Google Scholar 

  17. Vanhoe H (1993) J Trace Elem Electrolytes Health Dis 7:131–139

    CAS  PubMed  Google Scholar 

  18. Bryant CJ, McCulloch MT, Bennett VC (2003) J Anal At Spectrom 18:734–737

    Article  CAS  Google Scholar 

  19. Whittaker PG, Lind T, Williams JG, Gray AL (1989) Analyst 114:675–678

    Article  CAS  PubMed  Google Scholar 

  20. Chen S, Zhang Z, Yu H, Liu W, Sun M (2002) Anal Chim Acta 463:177–188

    Article  CAS  Google Scholar 

  21. Krachler M, Mohl C, Emons H, Shotyk W (2002) J Anal At Spectrom 17:844–851

    Article  CAS  Google Scholar 

  22. Lyon T, Fell G, Hutton R, Eaton A (1988) J Anal At Spectrom 3:265–271

    Article  CAS  Google Scholar 

  23. Amarasiriwardena D, Kotrebai M, Krushevska A, Barnes RM (1997) Can J Anal Sci Spectrosc 42:69–78

    CAS  Google Scholar 

  24. Amarasiriwardena C, Krushevska A, Foner H, Argentine M, Barnes RM (1992) J Anal At Spectrom 7:915–921

    Article  CAS  Google Scholar 

  25. Rodushkin I, Odman F, Olofsson R, Axelsson MD (2000) J Anal At Spectrom 15:937–944

    Article  CAS  Google Scholar 

  26. Rodushkin I, Odman F (2001) J Trace Elements Med Biol 14:241–247

    Article  CAS  Google Scholar 

  27. Rodushkin I, Odman F, Branth S (1999) Fresenius J Anal Chem 364:338–346

    Article  CAS  Google Scholar 

  28. Hinojosa Reyes L, Marchante-Gayón JM, García Alonso JI, Sanz-Medel A (2003) J Anal At Spectrom 18:1210–1216

    Article  CAS  Google Scholar 

  29. Tanner SD, Baranov VI, Bandura DR (2002) Spectrochim Acta 57B:1361–1452

    Article  Google Scholar 

  30. Marchante-Gayón JM, Sariego-Muñiz C, García-Alonso JI, Sanz-Medel A (1999) Anal Chim Acta 400:307–320

    Article  Google Scholar 

  31. Townsend AT (2000) J Anal At Spectrom 15:307–314

    Article  CAS  Google Scholar 

  32. Townsend AT, Miller KA, McLean S, Aldous S (1998) J Anal At Spectrom 13:1213–1219

    Article  CAS  Google Scholar 

  33. Sariego-Muñiz C, Marchante-Gayón JM, García-Alonso JI, Sanz-Medel A (1999) J Anal At Spectrom 14:193–198

    Article  Google Scholar 

  34. Friel JK, Skinner CS, Jackson SE, Longerich HP (1990) Analyst 115:269–273

    Article  PubMed  Google Scholar 

  35. Mingorance MD, Pérez-Vázquez ML, Lachica M (1993) J Anal At Spectrom 8:853–858

    Article  CAS  Google Scholar 

  36. Sariego Muñiz C, Marchante Gayón JM, García Alonso JI, Sanz-Medel A (1998) J Anal At Spectrom 13:283–287

    Article  Google Scholar 

  37. Case CP, Ellis L, Turner JC, Fairman B (2001) Clin Chem 47:275–280

    CAS  PubMed  Google Scholar 

  38. Vanhoe H, Vandecasteele C, Versieck J, Dams R (1989) Anal Chem 61:1851–1857

    Article  CAS  PubMed  Google Scholar 

  39. Caroli S, Alimonti A, Coni E, Petrucci F, Senofonte O (1994) Crit Rev Anal Chem 24:363–398

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the “Fundación para la Investigación Científica Aplicada y la Tecnología” (FICYT) del Principado de Asturias (Spain) for the Project reference PC-SPV01 06. Funding of this work through the Spanish Ministry of Science and Technology project BQU2003-04671 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Sanz-Medel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmiento-González, A., Marchante-Gayón, J.M., Tejerina-Lobo, J.M. et al. ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids. Anal Bioanal Chem 382, 1001–1009 (2005). https://doi.org/10.1007/s00216-005-3165-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3165-9

Keywords

Navigation