Skip to main content
Log in

Determination of glycolic acid in cosmetics by online liquid chromatography–Fourier transform infrared spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An isocratic online liquid chromatography Fourier transform infrared procedure has been developed for the determination of glycolic acid in cosmetics. The method involves the ultrasound-assisted extraction of glycolic acid from the samples with an acetonitrile:phosphate buffer (25 mM, pH 2.7) (3:97 v/v). The extracts were centrifuged and filtered before their injection into the chromatography system, which was equipped with a C18 column and used a flow rate of 150 μL min−1. FTIR spectra were acquired using a time-resolved rapid scan mode. To calculate the chromatograms, the spectral area was integrated between 1288 and 1215 cm−1, with baseline correction established between 1319 and 1150 cm−1, after correcting for the eluent spectral background. Peak area values of the extracted sample chromatograms were interpolated from an external calibration curve. The method provided a limit of detection of 0.034 mg mL−1 and a relative standard deviation of 6% for five measurements at the 0.174 mg mL−1 concentration level. Recovery values obtained by spiking 400 mg of three commercially available samples with amounts of glycolic acid from 3.7 to 9.8 mg ranged between 99.6 and 101%. The results obtained for the commercial samples agree well with their declared concentrations. An attempt to directly determine glycolic acid by attenuated total reflectance measurements using partial least squares calibration showed that results were strongly influenced by compounds coextracted from the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scalia VS, Callegari R, Villani S (1998) J Chromatogr A 795:219–225

    Google Scholar 

  2. Abreu Dutra E, Rocha Miritello Santoro MI, Micke GA, Franco Maggi Tavares M, Kedor-Hackmann ERM (2006) J Pharm Biomed Anal 40:242–248

  3. Nicoletti I, Corradini C, Cogliandro E, Cavazza A (1999) Int J Cosmetic Sci 21:265–274

    Article  CAS  Google Scholar 

  4. Chang ML, Chang CM (2003) J Pharm Biomed Anal 33:617–626

    Google Scholar 

  5. Huang WS, Lin CC, Huang MC, Wen KC (2002) J Food Drug Anal 10–2:95–100

    Google Scholar 

  6. Couch LH, Howard PC (2002) Int J Cosmetic Sci 24:89–95

    Article  CAS  Google Scholar 

  7. Salvador A, Peña MC, de la Guardia M (2001) Analyst 126:1428–1431

    Google Scholar 

  8. Somsen GW, Gooijer C, Brinkman UATh (1999) J Chromatogr A 856:213–242

    Google Scholar 

  9. Edelmann A, Ruzicka C, Frank J, Lendl B, Schrenk W, Gornik E, Strasser G (2001) J Chromatogr A 934:123–128

    Article  CAS  Google Scholar 

  10. Edelmann A, Diewok J, Rodriguez Baena J, Lendl B (2003) Anal Bioanal Chem 381:92–97

    Google Scholar 

  11. Schulte L, Rasmus E, Quintás G, Lendl B, Karst U (2006) Anal Chem 78(23):386, 8150–8155

    Google Scholar 

  12. Quintás G, Lendl B, Garrigues S, de la Guardia M (2008) J Chromatogr A 1190:102–109

    Google Scholar 

  13. Kuligowski J, Quintás G, Garrigues S, de la Guardia M (2008) Anal Chim Acta 624(2):278–285

    Article  CAS  Google Scholar 

  14. Kuligowski J, Quintás G, Garrigues S, de la Guardia M (2008) Talanta 77(1):229–234

    Google Scholar 

  15. de la Guardia M, Ruzicka J (1995) Analyst 2:17N

  16. de la Guardia M (1999) J Braz Chem Soc 10:429–436

    Article  Google Scholar 

  17. Ohnsmann J, Quintás G, Garrigues S, de la Guardia M (2002) Anal Bioanal Chem 374:561–565

    Article  CAS  Google Scholar 

  18. Moros J, Iñón FA, Garrigues S, de la Guardia M (2008) Talanta 74:632–641

    Article  CAS  Google Scholar 

  19. Armenta S, Quintás G, Garrigues S, de la Guardia M (2005) Trends Anal Chem 24(8):772–781

    Google Scholar 

  20. Sulub Y, LoBrutto R, Vivilecchia R, Wabuyele B (2008) Vib Spectrosc 46:128–134

    Google Scholar 

  21. Teixeira LSG, Oliveira FS, dos Santos HC, Cordeiro PWL, Almeida SQ (2008) Fuel 87:346

    Article  CAS  Google Scholar 

  22. Bruker Optics (2002) OPUS manual, version 4.0. Bruker Optics, Ettlingen, Germany

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministerio de Educación y Ciencia (Project CTQ2005-05604, FEDER) and Direcció General d’Investigació I Transferència Tecnològica de la Generalitat Valenciana (Project ACOMP/2007/131). A.B. acknowledges the Erasmus grant to perform studies at the University of Valencia. J.K. acknowledges the “V Segles” grant provided by the University of Valencia to carry out this study. G.Q. is grateful for a post-doctoral grant (“Ayudas para estancias de doctores en centros de investigación de excelencia de la Comunidad Valenciana”) from the Conselleria de Industra, Generalitat Valenciana (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. de la Guardia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuligowski, J., Breivogel, A., Quintás, G. et al. Determination of glycolic acid in cosmetics by online liquid chromatography–Fourier transform infrared spectrometry. Anal Bioanal Chem 392, 1383–1389 (2008). https://doi.org/10.1007/s00216-008-2430-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2430-0

Keywords

Navigation