Skip to main content
Log in

Optimal coherent control of sensitivity and selectivity in spectrochemical analysis

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The number and breadth of coherently controlled chemical processes are escalating exponentially since the recent convergence of stable broadband ultrafast laser sources, robust pulse shaping devices, and closed-loop optimization routines. We show here how these methods can also be applied to spectrochemical analysis. We discuss the basics of optimal coherent control and describe their use, both present and future, to enhance the sensitivity and/or selectivity of several different spectroscopic analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Potter ED, Herek JL, Pedersen S, Liu Q, Zewail AH (1992) Science 355:66–68

    CAS  Google Scholar 

  2. Szipocs R, Ferenc K, Spielmann Ch, Krausz F (1994) Opt Lett 19:201–203

    Article  CAS  Google Scholar 

  3. Nisoli M, Stagira S, De Silverstri S, Svelto O, Sartania S, Cheng Z, Lenzner M, Spielmann Ch, Krausz F (1997) Appl Phys B 65:189–196

    Article  CAS  Google Scholar 

  4. Sartania S, Cheng Z, Lenzner M, Tempea G, Spielmann Ch, Krausz F (1997) Opt Lett 22:1562–1564

    Article  CAS  Google Scholar 

  5. Baltuska A, Kobayashi T (2002) Appl Phys B 75:427–443

    Article  CAS  Google Scholar 

  6. Christov IP, Kapteyn HC, Murnane MM, Huang CP, Zhou JP (1995) Opt Lett 20:309–311

    Article  CAS  Google Scholar 

  7. http://www.kmlabs.com/products.htm; http://www.femtolasers.com; http://www.coherent.com/

  8. Sutter DH, Steinmeyer G, Gallmann L, Matuschek N, Morier-Genoud F, Keller U, Scheuer V, Angelow G, Tschudi T (1999) Opt Lett 24:631–633

    Article  CAS  Google Scholar 

  9. Maine D, Strickland D, Bado P, Pessot M, Mourou G (1988) IEEE J Quant Electron 24:398–405

    Article  Google Scholar 

  10. Pessot M, Maine P, Mourou G (1987) Opt Commun 62:419–421

    Article  CAS  Google Scholar 

  11. Driscoll TJ, Gale GM, Hache F (1994) Opt Commun 110:638–644

    Article  CAS  Google Scholar 

  12. Mashiko F, Nakumura CM, Li C-Q, Moon E, Wang H, Tacket HJ, Chang Z-H (2007) Appl Phys Lett 90:161114

    Article  CAS  Google Scholar 

  13. Weiner AM (2000) Rev Sci Instrum 71:1929–1960

    Article  CAS  Google Scholar 

  14. Hillegas CW, Tull JX, Goswami D, Strickland D, Warren WS (1994) Opt Lett 19:737–739

    Article  CAS  Google Scholar 

  15. Pearson BJ, White JL, Weinacht TC, Bucksbaum PH (2001) Phys Rev A 63:063412

    Article  CAS  Google Scholar 

  16. McGrane SD, personal communication.

  17. Trebino R, DeLong KW, Fittinghoff DN, Sweetser JN, Krumbugel MA, Richman BA, Kane DJ (1997) Rev Sci Instrum 68:3277

    Article  CAS  Google Scholar 

  18. Nuernberger P, Vogt G, Brixner T, Gerber G (2007) Phys Chem Chem Phys 9:2470–2497

    Article  CAS  Google Scholar 

  19. Katz O, Natan A, Silberberg Y, Rosenwaks S (2008) Appl Phys Lett 92:171116

    Article  CAS  Google Scholar 

  20. Pastirk I, Kangas M, Dantus M (2005) J Phys Chem A 109:2413

    Article  CAS  Google Scholar 

  21. Dela Cruz JM, Lozovoy VV, Dantus M (2006) J Mol Spectrosc 42:178–186

    Google Scholar 

  22. Rabitz HA, Hsieh MM, Rosenthal CM (2004) Science 303:1998–2001

    Article  CAS  Google Scholar 

  23. Roslund J, Roth M, Rabitz HA (2006) Phys Rev A 74:043414

    Article  CAS  Google Scholar 

  24. Kukura P, McCamant DW, Mathies RA (2007) Annu Rev Phys Chem 58:461–488

    Article  CAS  Google Scholar 

  25. Konradi J, Singh AK, Materny A (2006) J Photochem Photobiol A 180:289–299

    Article  CAS  Google Scholar 

  26. Yellampalle B, Averitt RD, Efimov A, Taylor AJ (2005) Opt Express 13:7672–7682

    Article  CAS  Google Scholar 

  27. Pestov D, Murawski RK, Ariunbold GO, Wang X, Zhi M-C, Sokolov AV, Sautenkov VA, Rostovtsev YuV, Dogariu A, Huang Y, Scully MO (2007) Science 316:265–268

    Article  CAS  Google Scholar 

  28. Zhang S, Zhang L, Zhang X-G, Ding L-T, Chen G-L, Sun Z-R, Wang Z-G (2007) Chem Phys Lett 433:416–421

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks go to Drs Shawn D. McGrane, Margo Greenfield, and R. Jason Scharff for their efforts to actualize these concepts in our laboratories. In addition, Professor Herschel Rabitz has been instrumental in crystallizing our optimal control concepts. This work was performed at Los Alamos National Laboratory, operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, D.S. Optimal coherent control of sensitivity and selectivity in spectrochemical analysis. Anal Bioanal Chem 393, 51–56 (2009). https://doi.org/10.1007/s00216-008-2318-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2318-z

Keywords

Navigation