Skip to main content
Log in

Determination of immunomodulatory effects: focus on functional analysis of phagocytes as representatives of the innate immune system

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The evaluation of the effects of drugs or chemicals on the functions of the immune system is an increasingly important task. Due to the accessibility of primary cells and cell lines, in vitro cellular functional tests are frequently being performed with cells representing the innate immune system, in particular those with phagocytotic activities, such as neutrophils and macrophages. Suitable functional parameters are the efficiency of phagocytosis, the efficiency with which viable pathogens are killed, the production of reactive oxygen and nitrogen species (ROS and RNS) and that of cytokines. Corresponding analytical procedures are available, but standardization is required, as varying the procedure may influence the outcomes of the assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Herzyk DJ, Ruggieri EV, Cunningham L, Polsky E, Herold C, Klinkner AM, Badger A, Kerns WD, Bugelski PJ (1997) Toxicol Pathol 25:351–362

    CAS  Google Scholar 

  2. Gore ER (2006) Basic Clin Pharmacol 98:331–335

    Article  CAS  Google Scholar 

  3. EMEA (2006) ICH Topic S8 (CHMP/167235/2004). European Medicines Agency (EMEA), London

  4. Carfi M, Gennari A, Malerba I, Corsini E, Pallardy M, Pieters R, Van Loveren H, Vohr HW, Hartung T, Gribaldo L (2007) Toxicology 229:11–22

    Article  CAS  Google Scholar 

  5. Matsunaga T, Rahman A (1998) Immunol Rev 166:177–186

    Article  CAS  Google Scholar 

  6. Germolec DR (2004) Toxicol Lett 149:109–114

    Article  CAS  Google Scholar 

  7. Hymery H, Sibiril Y, Parent-Massin D (2006) Cell Biol Toxicol 22:243–255

    Article  CAS  Google Scholar 

  8. Fitzer-Attas CJ, Lowry M, Crowley MT, Finn AJ, Meng F, DeFranco AL, Lowell CA (2000) J Exp Med 191:669–681

    Article  CAS  Google Scholar 

  9. Suchard SJ, Mansfield PJ, Boxer LA, Shayman JA (1997) J Immunol 158:4961–4967

    CAS  Google Scholar 

  10. Beletskii A, Cooper M, Sriraman P, Chiriac C, Zhao L, Abbot S, Yu L (2005) BioTechniques 39:894–897

    CAS  Google Scholar 

  11. Anding K, Rost JM, Jacobs E, Daschner FD (2003) FEMS Immunol Med Microbiol 35:147–152

    Article  CAS  Google Scholar 

  12. Salih HR, Husfeld L, Adam D (2000) Clin Microbiol Infect 6:251–258

    Article  CAS  Google Scholar 

  13. Klippel N, Bilitewski U (2007) Anal Lett 40:1400–1411

    Article  CAS  Google Scholar 

  14. Martinez-Esparza M, Aguinaga A, Gonzalez-Parraga P, Garcia-Penarrubia P, Jouault T, Arguelles JC (2007) Clin Microbiol Infect 13:384–394

    Article  CAS  Google Scholar 

  15. Pieters J (2001) Curr Opin Immunol 13:37–44

    Article  CAS  Google Scholar 

  16. Agramonte-Hevia J, Gonzalez-Arenas A, Barrera D, Velasco-Velazquez M (2002) FEMS Immunol Med Microbiol 34:355–366

    Article  Google Scholar 

  17. Marodi L, Korchak HM, Johnston RB (1991) J Immunol 146:2783–2789

    CAS  Google Scholar 

  18. Gordon DL, Rice JL (1988) Immunology 64:709–714

    CAS  Google Scholar 

  19. Liu Q, Suzuki K, Kudo S, Yamada M, Kowatari K, Umeda T, Nakaji S, Sugawara K (2000) Food Chem Toxicol 38:423–428

    Article  CAS  Google Scholar 

  20. Kampen AH, Tollersrud A, Larsen S, Roth JA, Frank DE, Lund A (2004) Vet Immunol Immunopathol 97:105–114

    Article  CAS  Google Scholar 

  21. Newman SL, Bhugra B, Holly A, Morris RE (2005) Infect Immun 73:770–777

    Article  CAS  Google Scholar 

  22. Anes E, Kühnel MP, Bos E, Moniz-Pereira J, Habermann A, Griffiths G (2003) Nat Cell Biol 5:793–802

    Article  CAS  Google Scholar 

  23. Marcil A, Harcus D, Thomas DY, Whiteway M (2002) Infect Immun 70:6319–6329

    Article  CAS  Google Scholar 

  24. Pattanapanyasat K, Sukapirom K, Tachavanich K, Kaewmoon S (2007) Cytometry A 71:1027–1033

    Google Scholar 

  25. Fang FC (2004) Nat Rev Microbiol 2:820–832

    Article  CAS  Google Scholar 

  26. Dahlgren C, Karlsson A (1999) J Immunol Methods 232:3–14

    Article  CAS  Google Scholar 

  27. Foster KA, Galeffi F, Gerich FJ, Turner DA, Müller M (2006) Prog Neurobiol 79:136–171

    Article  CAS  Google Scholar 

  28. Gomes A, Fernandes E, Lima JLFC (2005) J Biochem Biophys Meth 65:45–80

    Article  CAS  Google Scholar 

  29. Pick E, Mizel D (1981) J Immunol Methods 46:211–226

    Article  CAS  Google Scholar 

  30. Bartosz G (2006) Clin Chim Acta 368:53–76

    Article  CAS  Google Scholar 

  31. Wardman P (2007) Free Rad Biol Med 43:995–1022

    Article  CAS  Google Scholar 

  32. Rochelle LG, Fischer BM, Adler KB (1998) Free Rad Biol Med 24:863–868

    Article  CAS  Google Scholar 

  33. Soh N (2006) Anal Bioanal Chem 386:532–543

    Article  CAS  Google Scholar 

  34. Nathan C, Xie Q (1994) J Biol Chem 269:13725–13728

    CAS  Google Scholar 

  35. Boudko DY (2007) J Chromatogr B 851:186–210

    Article  CAS  Google Scholar 

  36. Miles AM, Wink DA, Cook JC, Grisham MB (1996) Methods Enzymol 268:105–120

    Article  CAS  Google Scholar 

  37. Bedioui F, Villeneuve N (2003) Electroanalysis 15:5–18

    Article  CAS  Google Scholar 

  38. Tarpey MM, Wink DA, Grisham MB (2004) Am J Physiol Regul Integr Comp Physiol 286:R431–R444

    CAS  Google Scholar 

  39. Kojima H, Hirotani M, Nakatsubo N, Kikuchi K, Urano Y, Higuchi T, Hirata Y, Nagano T (2001) Anal Chem 73:1967–1973

    Article  CAS  Google Scholar 

  40. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Anal Chem 70:2446–2453

    Article  CAS  Google Scholar 

  41. Gomes A, Fernandes E, Lima JLFC (2006) J Fluoresc 16:119–139

    Article  CAS  Google Scholar 

  42. Balcerczyk A, Soszynski M, Bartosz G (2005) Free Rad Biol Med 39:327–335

    Article  CAS  Google Scholar 

  43. Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) J Leukoc Biol 74:479–485

    Article  CAS  Google Scholar 

  44. Foster JR (2001) Int J Exp Pathol 82:171–192

    Article  CAS  Google Scholar 

  45. House RV (2001) Toxicology 158:51–58

    Article  CAS  Google Scholar 

  46. Pestka J, Zhou HR (2006) Toxicol Sci 92:445–455

    Article  CAS  Google Scholar 

  47. Wagner W, Walczak-Drzewiecka A, Slusarczyk A, Biecek P, Rychlewski L, Dastych J (2006) Toxicol Lett 162(1):55–70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Bilitewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilitewski, U. Determination of immunomodulatory effects: focus on functional analysis of phagocytes as representatives of the innate immune system. Anal Bioanal Chem 391, 1545–1554 (2008). https://doi.org/10.1007/s00216-008-2089-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2089-6

Keywords

Navigation