Skip to main content
Log in

A reversed-phase ion-interaction chromatographic method for in-vitro estimation of the percutaneous absorption of water-soluble UV filters

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method based on ion-interaction chromatography with UV detection for simultaneous in-vitro estimation of the percutaneous absorption of the most used water-soluble UV filters in sunscreen cosmetics is proposed. These UV filters were phenylbenzimidazole sulfonic acid, disodium phenyl dibenzimidazole tetrasulfonate, benzophenone-4, and terephthalylidene dicamphor sulfonic acid. The methodology is based on applying the sunscreen containing the target UV filters to human epidermis in a diffusion cell. Analytes are determined in the receptor solution. To ensure skin integrity, screening of the cells was carried out by analytical determination of a marker. Analytical variables such as percentage ethanol, concentration of ion-pairing agent, pH of the mobile phase, and temperature were studied in order to achieve high resolution of the chromatographic peaks in the lowest possible time of analysis. The conditions selected consisted of a mobile phase composed of 35:65 (v/v) ethanol–ammonium acetate buffer solution (pH 4, containing 50 mmol L−1 tetra-n-butylammonium bromide). The chromatographic determination was carried out with the analytical column at 50 °C. UV detection was carried out at the maximum absorption wavelength for each analyte. The limit of detection (3s y/x /b) ranged from 16 to 65 ng mL−1, depending on the analyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lucas RM, Ponsonby AL (2006) Prog Biophys Mol Biol 92:140–149

    Article  CAS  Google Scholar 

  2. Nohynek GJ, Schaefer H (2001) Regul Toxicol Pharmacol 33:285–299

    Article  CAS  Google Scholar 

  3. Gonzenbech HU (2007) Drugs Pharm Sci 163:379–396

    Google Scholar 

  4. Harripersad S, Rhein LD (2007) Surfactant Sci Ser 135:277–321

    CAS  Google Scholar 

  5. Nash JF (2006) Dermatol Clin 24:35–51

    Article  CAS  Google Scholar 

  6. Gaspar LR, Campos PM (2007) Int J Pharm 343:181–189

    Article  CAS  Google Scholar 

  7. Maier T, Korting HC (2005) Skin Pharmacol Physiol 18:253–262

    Article  CAS  Google Scholar 

  8. Alanko K, Jolanki R, Estlander T, Kanerva L (2001) Contact Dermatitis 44:188

    Article  CAS  Google Scholar 

  9. Soeborg T, Basse LH, Halling-Sorensen B (2007) Toxicology 236:140–148

    Article  CAS  Google Scholar 

  10. Kunz PY, Fent K (2006) Toxicol Appl Pharmacol 217:86–99

    Article  CAS  Google Scholar 

  11. Damiani E, Rosati L, Castagna R, Carloni P, Greci L (2006) J Photochem Photobiol B 82:204–213

    Article  CAS  Google Scholar 

  12. Heneweer M, Muusse M, van den Berg M, Sanderson JT (2005) Toxicol Appl Pharmacol 208:170–177

    Article  CAS  Google Scholar 

  13. Sayre RM, Dowdy JC, Gerwig AJ, Shields WJ, Lloyd RV (2005) Photochem Photobiol 81:452–456

    Article  CAS  Google Scholar 

  14. Chisvert A, Salvador A (2007) UV filters in sunscreens and other cosmetics. Regulatory aspects and analytical methods. In: Salvador A, Chisvert A (eds) Analysis of cosmetic products. Elsevier Amsterdam, The Netherlands

    Google Scholar 

  15. Hughes TM, Stone NM (2007) Contact Dermatitis 56:153–156

    Article  CAS  Google Scholar 

  16. Rodriguez E, Valbuena MC, Rey M, Porras de Quintana L (2006) Photodermatol Photoimmunol Photomed 22:189–192

    Article  CAS  Google Scholar 

  17. Schauder S, Ippen H (1997) Contact Dermatitis 37:221–232

    Article  CAS  Google Scholar 

  18. Darvay A, White IR, Rycroft RJ, Jones AB, Hawk JL, McFadden JP (2001) Br J Dermatol 145:597–601

    Article  CAS  Google Scholar 

  19. Inbaraj JJ, Bilski P, Chignell CF (2002) Photochem Photobiol 75:107–116

    Article  CAS  Google Scholar 

  20. Scalia S, Molinari A, Casolari A, Maldotti A (2004) Eur J Pharm Sci 22:241–249

    Article  CAS  Google Scholar 

  21. Benech-Kieffer F, Meuling WJA, Leclerc C, Roza L, Leclaire J, Nohynek G (2003) Skin Pharmacol Appl Skin Physiol 16:343–355

    Article  CAS  Google Scholar 

  22. Dean SW, Dunmore RH, Ruddock SP, Dean JC, Martin CN, Kirkland DJ (1992) Mutagenesis 7:179–182

    Article  CAS  Google Scholar 

  23. Guenther L, Lynde CW, Zip C (2006) J Cutan Med Surg 10:22–25

    Google Scholar 

  24. Bernerd F, Vioux C, Asselineau D (2000) Photochem Photobiol 71:314–320

    Article  CAS  Google Scholar 

  25. Seite S, Moyal D, Richard S, de Rigal J, Leveque JL, Hourseau C, Fourtanier A (1998) J Photochem Photobiol B 44:69–76

    Article  CAS  Google Scholar 

  26. Moyal D (2004) Photodermatol Photoimmunol Photomed 20:243–247

    Article  CAS  Google Scholar 

  27. Stege H, Budde MA, Grether-Beck S, Krutmann J (2000) Photodermatol Photoimmunol Photomed 16:256–259

    Article  CAS  Google Scholar 

  28. Seite S, Colige A, Piquemal-Vivenot P, Montastier C, Fourtanier A, Lappiere C, Nusgens B (2000) Photodermatol Photoimmunol Photomed 16:147–155

    Article  CAS  Google Scholar 

  29. Marrot L, Belaidi JP, Chaubo C, Meunier JR, Perez P, Agapakis-Causee C (1998) Eur J Dermatol 8:403–412

    CAS  Google Scholar 

  30. Fourtanier A (1996) Photochem Photobiol 64:688–693

    Article  CAS  Google Scholar 

  31. Fourtanier A, Labat-Robert J, Kern P, Berrebi C, Gracia AM, Boyer B (1992) Photochem Photobiol 55:549–560

    Article  CAS  Google Scholar 

  32. Giokas DL, Salvador A, Chisvert A (2007) Trends Anal Chem 26:360–374

    Article  CAS  Google Scholar 

  33. Brinon L, Geiger S, Alard V, Doucet J, Tranchant JF, Couarraze G (1999) J Controlled Release 60:67–76

    Article  CAS  Google Scholar 

  34. Potard G, Laugel C, Baillet A, Schaefer H, Marty JP (1999) Int J Pharm 189:249–260

    Article  CAS  Google Scholar 

  35. Benech-Kiefer F, Wegrich P, Schwarzenbach R, Klecak G, Weber T, Leclaire J, Schaefer H (2000) Skin Pharmacol Appl Skin Physiol 13:324–335

    Article  Google Scholar 

  36. Balaguer A, Salvador A, Chisvert A, Melia M, Herraez M, Diez O (2006) Anal Bioanal Chem 285:1225–1232

    Article  Google Scholar 

  37. Couteau C, Perez Cullel N, Connan AE, Coiffard LJ (2001) Int J Pharm 222:153–157

    Article  CAS  Google Scholar 

  38. Potard G, Laugel C, Schaefer H, Marty JP (2000) Skin Pharmacol Appl Skin Physiol 13:336–344

    Article  CAS  Google Scholar 

  39. Balaguer A, Chisvert A, Salvador A (2006) J Pharm Biomed Anal 40:922–927

    Article  CAS  Google Scholar 

  40. Vidal MT, Chisvert A, Salvador A (2003) Talanta 59:591–599

    Article  CAS  Google Scholar 

  41. Salvador A, Chisvert A (2005) Anal Chim Acta 537:15–24

    Article  CAS  Google Scholar 

  42. Gennaro MC, Angelino S (1997) J Chromatogr A 789:181–194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Spanish Ministry of Education and Science for the research project (CTQ2006–00296). Z. León is also grateful for his predoctoral grant. Authors are also grateful to C. del Cañizo (L’Oreal, Madrid, Spain) and R. Breniaux (L’Oreal, Aulnay sous Bois, France) for their kindness providing us standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salvador.

Rights and permissions

Reprints and permissions

About this article

Cite this article

León, Z., Balaguer, A., Chisvert, A. et al. A reversed-phase ion-interaction chromatographic method for in-vitro estimation of the percutaneous absorption of water-soluble UV filters. Anal Bioanal Chem 391, 859–866 (2008). https://doi.org/10.1007/s00216-008-2013-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2013-0

Keywords

Navigation