Skip to main content

Advertisement

Log in

A microarray chip for label-free detection of narcotics

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A protein array chip for label-free optical detection of low molecular weight compounds has been developed. As a proof of principle, the chip is proven capable of rapidly (approximately 1 min) determining hits from aqueous cocktails composed of four common narcotics, cocaine, ecstasy, heroin, and amphetamine, using imaging surface plasmon resonance (SPR) as the detection principle. The chip is produced by injecting a mixture of antibodies and letting them self-sort and bind to narcotic analog coupled proteins already present in a predefined pattern on the supporting substrate. An indirect detection method, where antibodies are displaced from the surface upon recognition of their corresponding narcotics, is used to obtain the optical contrast and thus a detectable SPR and/or ellipsometric signal. Two types of readouts are possible from the present setup: intensity SPR images and SPR/ellipsometric sensorgrams. Positive hits were routinely obtained for analyte concentrations of 50 pg/μL and the limit of detection, without any parameter optimizations, seems to fall in the range 0.5 pg/μL (1.4 nM) for heroin, 2.5 pg/μL (8.2 nM) for cocaine, and 5 pg/μL for the other two narcotics (26 nM for ecstasy and 37 nM for amphetamine). With improved readout possibilities (sampling frequency), signal evaluation algorithms, and antibody–antigen design strategies, we believe this limit can be further improved. The chip is shown to work for many measurement cycles with excellent reproducibility. Moreover, with a more advanced fluidic system, excess injected antibodies could be collected and reused for many cycles, which could make the running costs of the system very low. The chip is in no way limited to detection of narcotics. Other low molecular weight compounds could easily be detected on the same chip. For example, trinitrotoluene detection has already been demonstrated using our chip. Possible areas of application for the system are therefore envisaged in airport and underground transport security, customs, drug interdiction, forensics, and as warning alerts on military equipment and personnel.

Narcotics chip (left) composed of spots of piezodispensed analog-coupled proteins that are loaded with antibodies to form a patterned regions represented by the capital letter of the four different narcotics in focus. (Right) The same chip showing hits for ectasy and herion in the cocktail. Both images are obtained in imaging surface plasmon resonance mode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. United Nations, Office on Drugs and Crime (2006) World drug report 2006. Volume I, analysis. United Nations, Office on Drugs and Crime, New York

  2. Moore D (2004) Rev Sci Instrum 75:2499

    Article  CAS  Google Scholar 

  3. Revercomb HE, Mason EA (1975) Anal Chem 47:970

    Article  CAS  Google Scholar 

  4. Wu C, Siems W, Hill H (2000) Anal Chem 72:396

    Article  CAS  Google Scholar 

  5. Collins D, Lee M (2002) Anal Bioanal Chem 372:66

    Article  CAS  Google Scholar 

  6. Keller T, Miki A, Regenscheit P, Dirnhofer R, Schneider A, Tsuchihashi H (1998) Forensic Sci Int 94:55

    Article  CAS  Google Scholar 

  7. Van Nimmen N, Poels K, Veulemans H (2004) J Chromatogr B 804:375

    Article  Google Scholar 

  8. Clauwaert K, VanBocxlaer J, Lambert W, DeLeenheer A (1996) Anal Chem 68:3021

    Article  CAS  Google Scholar 

  9. Devine PJ, Anis NA, Wright J, Kim S, Eldefrawi AT, Eldefrawi ME (1995) Anal Biochem 227:216

    Article  CAS  Google Scholar 

  10. Halamek J, Makower A, Skladal P, Scheller F (2002) Biosens Bioelectron 17:1045

    Article  CAS  Google Scholar 

  11. Davies DR, Padlan EA, Sheriff S (1990) Annu Rev Biochem 59:439

    Article  CAS  Google Scholar 

  12. Klenkar G, Valiokas R, Lundstrom I, Tinazli A, Tampe R, Piehler J, Liedberg B (2006) Anal Chem 78:3643

    Article  CAS  Google Scholar 

  13. MacBeath G, Schreiber S (2000) Science 289:1760

    CAS  Google Scholar 

  14. Templin M, Stoll D, Schrenk M, Traub P, Vohringer C, Joos T (2002) Trends Biotechnol 20:160

    Article  CAS  Google Scholar 

  15. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R, Gerstein M, Snyder M (2001) Science 293:2101

    Article  CAS  Google Scholar 

  16. Zhu H, Snyder M (2001) Curr Opin Chem Biol 5:40

    Article  CAS  Google Scholar 

  17. Sapsford K, Charles P, Patterson C, Ligler F (2002) Anal Chem 74:1061

    Article  CAS  Google Scholar 

  18. Holt DB, Kusterbeck AW, Ligler FS (2000) Anal Biochem 287:234

    Article  CAS  Google Scholar 

  19. Rabbany SR, Piervincenzi RT, Kusterbeck AW, Bredehorst R, Ligler FS (1998) Anal Lett 31:1663

    CAS  Google Scholar 

  20. Shriver-Lake LC, Charles PT, Kusterbeck AW (2003) Anal Bioanal Chem 377:550

    Article  CAS  Google Scholar 

  21. Love J, Estroff L, Kriebel J, Nuzzo R, Whitesides G (2005) Chem Rev 105:1103

    Article  CAS  Google Scholar 

  22. Wink T, vanZuilen SJ, Bult A, vanBennekom WP (1997) Analyst 122:R43

    Article  Google Scholar 

  23. Pardo L, Wilson W, Boland T (2003) Langmuir 19:1462

    Article  CAS  Google Scholar 

  24. Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000) Biotechniques 28:492

    CAS  Google Scholar 

  25. Mrksich M, Whitesides G (1996) Annu Rev Biophys Biomol Struct 25:55

    Article  CAS  Google Scholar 

  26. Roach P, Farrar D, Perry C (2005) J Am Chem Soc 127:8168

    Article  CAS  Google Scholar 

  27. Johansen K, Arwin H, Lundstrom I, Liedberg B (2000) Rev Sci Instrum 71:3530

    Article  CAS  Google Scholar 

  28. Nelson B, Frutos A, Brockman J, Corn R (1999) Anal Chem 71:3928

    Article  CAS  Google Scholar 

  29. Månsson P, Johansson A-S, Sandén B, Loniakan S (2003) Coated metal surface on solid support useful in analyte detection by displacement. Patent WO/2004/001416

  30. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  31. Abelès F (1976) Surf Sci 56:237

    Article  Google Scholar 

  32. Poksinski M, Arwin H (2004) Thin Solid Films 455–456:716

    Article  Google Scholar 

  33. Westphal P, Bornmann A (2002) Sens Actuators B 84:278

    Article  Google Scholar 

  34. Rothenhausler B, Knoll W (1988) Nature 332:615

    Article  Google Scholar 

  35. Mezzasoma L, Bacarese-Hamilton T, Di Cristina M, Rossi R, Bistoni F, Crisanti A (2002) Clin Chem 48:121

    CAS  Google Scholar 

  36. Myszka DG (1999) J Mol Recognit 12:279

    Article  CAS  Google Scholar 

  37. Narang U, Gauger PR, Kusterbeck AW, Ligler FS (1998) Anal Biochem 255:13

    Article  CAS  Google Scholar 

  38. Duda R, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  39. Jain A, Duin R, Mao J (2000) IEEE Trans Pattern Anal 22:4

    Article  Google Scholar 

  40. Pearce TC, Schiffman SS, Nagle HT, Gardner JW (2003) Handbook of machine olfaction: electronic nose technology. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Wallenberg Consortium North (WCN), the Swedish Research Counsil (VR), and the Swedish Foundation for Strategic Research (SSF) through the Biomimetic Materials Science and NanoSense programs. We also thank Per Månsson and Ann-Charlotte Hellgren at Biosensor Applications AB for supplying the protein conjugates, antibodies, and narcotic cocktails.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liedberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klenkar, G., Liedberg, B. A microarray chip for label-free detection of narcotics. Anal Bioanal Chem 391, 1679–1688 (2008). https://doi.org/10.1007/s00216-008-1839-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1839-9

Keywords

Navigation