Skip to main content
Log in

Smoothing and passivation of special Si(111) substrates: studied by SPV, PL, AFM and SEM measurements

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface sensitive techniques, the field-modulated surface photovoltage, photoluminescence measurements, atomic force microscopy and scanning electron microscopy, were employed to yield detailed information on the influence of wet-chemical treatments on the preparation induced microroughness and electronic properties of wet-chemically passivated Si(111) substrates with special surface morphology. Stepped substrates with evenly distributed atomically flat terraces were prepared and passivated by thin oxide layers, which were used as a starting point for the subsequent H-termination after long storage in air. It was shown that their surface morphology and electronic properties do not degrade. Applying this preparation method to solar cell substrates with randomly distributed Si(111) pyramids, we achieved significantly lower densities of surface states and reduced recombination loss at a-Si:H/c-Si interfaces, compared with conventional pretreatments. The surface microroughness, the density of rechargeable states and the resulting recombination loss on a-Si:H/c-Si heterojunctions were found to be mainly influenced by two steps of surface pretreatment: firstly, the wet-chemical smoothing procedure of structured substrates and, secondly, the removal of native and wet-chemical oxides during the final etching in HF- or NH4F- containing solutions.

After wet-chemical oxidation in H2SO4/H2O2 and storage in air

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chabal YA, Higashi GS, Raghavachari K, Burrows VA (1989) J Vac Sci Technol A 7(3):2104

    Article  CAS  Google Scholar 

  2. Okorn-Schmidt HF (1999) IBM J Res Dev 43:315

    Article  Google Scholar 

  3. Noguchi H, Adachi S (2005) Appl Surf Sci 246:139

    Article  CAS  Google Scholar 

  4. Yang SK, Peter S, Takoudis CG (1994) J Appl Phys 76 (7):4107

    Article  CAS  Google Scholar 

  5. Angermann H, Henrion W, Rebien M, Röseler A (2004) Appl Surf Sci 235:322

    Article  CAS  Google Scholar 

  6. Angermann H, Henrion W, Rebien M, Röseler A (2003) Solid State Phenomena 92:179

    Article  CAS  Google Scholar 

  7. Angermann H (2002) Anal Bioanal Chem 374:676

    Article  CAS  Google Scholar 

  8. Rappich J, Timoshenko VY, Dittrich T (1997) J Electrochem Soc 144:493

    Article  CAS  Google Scholar 

  9. Timoshenko VY, Petrenko AB, Stolyarov MN, Dittrich T, Füssel W, Rappich J (1999) J Appl Phys 85(2):4171

    Article  CAS  Google Scholar 

  10. Laades A (2005) PhD thesis, Technische Universität Berlin

  11. Heilig K (1968) Exp Tech Phys 14:135

    Google Scholar 

  12. Heilig K (1984) Solid State Electron 27(4):395

    Article  CAS  Google Scholar 

  13. Kern WJ (1990) Electrochem Soc 137(6):1987

    Article  Google Scholar 

  14. Maydell Kv, Conrad E, Schmidt M (2006) Prog Photovolt 14:289

    Article  CAS  Google Scholar 

  15. Jablonovitch E, Allara DL, Chang CC, Gmitter T, Bright TB (1986) Phys Rev Lett 57:249

    Article  Google Scholar 

  16. Weinberger BR, Peterson GG, Eschrich TC, Krasinski HA (1986) J Appl Phys 60:3232

    Article  CAS  Google Scholar 

  17. Allongue P, Villeneuve CH, Morin S, Boukherroub R, Wayner DDM (2000) Electrochimica Acta 45:4591

    Article  CAS  Google Scholar 

  18. Wade CP, Chidsey CED (1997) Appl Phys Lett 71:1679.

    Article  CAS  Google Scholar 

  19. Fukidome H, Matsumura M (1998) Appl Surf Sci 130:146

    Article  Google Scholar 

  20. Rauscher S, Dittrich T, Aggour M, Rappich J, Flietner H, Lewerenz H-J (1995) Appl Phys Lett 66:3018

    Article  CAS  Google Scholar 

  21. Henrion W, Rebien M, Angermann H, Röseler A (2002) Appl Surf Sci 202:199

    Article  CAS  Google Scholar 

  22. Pointdexter EH, Geraldi GJ, Rueckel ME, Caplan PJ, Johnsohn NM, Biegelsen DK (1984) J Appl Phys 56:2844

    Article  Google Scholar 

  23. Flietner H (1995) Mater Sci Forum 73:185–188

    Google Scholar 

  24. Lenahan PM, Dressendorfer PV (1984) J Appl Phys 55:3495

    Article  CAS  Google Scholar 

  25. Pointdexter EH (1984) J Appl Phys 56:2844

    Article  Google Scholar 

  26. Angermann H, Rappich J, Maydell K, Conrad E, Sieber I, Schaffarzik D, Schmidt M In: Hoffmann W et al (eds) 21st European photovoltaic solar energy conference, Dresden, Germany, 4–8 Sept 2006, contribution no 2CV.3.41, p 895

  27. Schmidt M, Korte L, Laades A, Stangl R, Schubert C, Angermann H, Conrad E, Maydell K (2007) Thin Solid Films 515:7475

    Article  CAS  Google Scholar 

  28. Timoshenko VY, Rappich J, Dittrich T (1997) Jpn J Appl Phys 36:L58

    Article  CAS  Google Scholar 

  29. Timoshenko VY, Petrenko AB, Dittrich T, Füssel W, Rappich J (2000) Thin Solid Films 364:196

    Article  CAS  Google Scholar 

  30. Angermann H, Korte L, Rappich J, Schaffarzik D, Conrad E, Sieber I, Schmidt M (2007) In: Proceedings of the 22nd European photovoltaic solar energy conference Milan, Italy, 3–7 Sept 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Angermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angermann, H., Rappich, J., Sieber, I. et al. Smoothing and passivation of special Si(111) substrates: studied by SPV, PL, AFM and SEM measurements. Anal Bioanal Chem 390, 1463–1470 (2008). https://doi.org/10.1007/s00216-007-1738-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1738-5

Keywords

Navigation