Skip to main content
Log in

Electrochemical preparation of copper–dendrimer nanocomposites: picomolar detection of Cu2+ ions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present work describes, for the first time, in situ electrochemical preparation of dendrimer-encapsulated Cu nanoparticles using a self-assembled monolayer of fourth-generation amine-terminated polyamidoamine (PAMAM) dendrimer as the template. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) studies of the modified surface confirmed the presence of Cu nanoparticles entrapped in dendrimer film. Au electrode modified with a monolayer of the dendrimer enables preconcentration and subsequent voltammetric detection of Cu2+ at picomolar concentrations. Further, Cu nanoparticles in the dendrimer monolayer could be electrochemically derivatised to Cu hexacyanoferrate, which exhibits specific crystal planes, unlike the random distribution of crystal planes in bulk-formed Cu hexacyanoferrate, which is another catalytically active material for sensor applications.

Electrochemical preparation of copper–dendrimer nanocomposite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zeng F, Zimmerman S (1997) Chem Rev 97:1681–1712

    Article  CAS  Google Scholar 

  2. Bosman AW, Janssen HM, Meijer W (1999) Chem Rev 99:1665–1688

    Article  CAS  Google Scholar 

  3. Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW (1994) Science 266:1226

    Article  CAS  Google Scholar 

  4. Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW (1995) J Am Chem Soc 117:4417–4418

    Article  CAS  Google Scholar 

  5. Zimmerman SC, Wendland MS, Rakow NA, Zharov I, Suslick KS (2002) Nature 418:399–403

    Article  CAS  Google Scholar 

  6. Archut A, Azzellini GC, Balzani V, De Cola L, Vögtle F (1998) J Am Chem Soc 120:12187–12191

    Article  CAS  Google Scholar 

  7. Zhao M, Crooks RM (1999) Angew Chem Int Ed 38:364–366

    Article  CAS  Google Scholar 

  8. Yeung LK, Crooks RM (2001) Nano Lett 1:14–17

    Article  CAS  Google Scholar 

  9. Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692

    Article  CAS  Google Scholar 

  10. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:81–190

    Article  Google Scholar 

  11. Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877–4878

    Article  CAS  Google Scholar 

  12. Niu Y, Yeung LK, Crooks RM (2001) J Am Chem Soc 123:6840–6846

    Article  CAS  Google Scholar 

  13. Li Y, El-Sayed MA (2001) J Phys Chem B 105:8938–8943

    Article  CAS  Google Scholar 

  14. Zhao M, Crooks RM (1999) Adv Mater 11:217

    Article  CAS  Google Scholar 

  15. Ye H, Crooks RM (2005) J Am Chem Soc 127:4930

    Article  CAS  Google Scholar 

  16. Fonseca ITE, Martin AC, Pletcher D (1987) J Electroanalchem 218:327–329

    Article  CAS  Google Scholar 

  17. Davis J, Moorcroft MJ, Wilkins SJ, Compton RG (2000) Analyst 12:737–742

    Article  Google Scholar 

  18. Tag K, Riedel K, Bauer HJ, Hanke G, Baronian KHR, Kunze G (2007) Sens Actuators B 122:403–409

    Article  Google Scholar 

  19. Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601–619

    Article  CAS  Google Scholar 

  20. Agra-Gutierrez C, Hardcastle JL, Ball JC, Compton RG (1999) Analyst 124:1053–1057

    Article  CAS  Google Scholar 

  21. Wang H, Huang Y, Tan Z, Hu X (2004) Anal Chim Acta 526:13–17

    Article  CAS  Google Scholar 

  22. Davis J, Moorcroft MJ, Wilkin SJ, Compton RG, Cardosi MF (2000) Electroanalysis 12:1363–1367

    Article  CAS  Google Scholar 

  23. Hardcastle JL, Hignette J, Melville JL, Compton RG (2002) Analyst 127:518–524

    Article  CAS  Google Scholar 

  24. Hardcastle JL, Marcott GG, Compton RG (2000) Electroanalysis 12:559–563

    Article  CAS  Google Scholar 

  25. Kulesza J, Malik MA, Skorek J, Miecznikowski K, Zamponi S, Berrettoni M, Giorgetti M, Marassi R (1999) J Electrochem Soc 146:3757–3761

    Article  CAS  Google Scholar 

  26. Zhou DM, Ju HX, Chen HY (1998) J Electroanal Chem 408:219–223

    Article  Google Scholar 

  27. Kulesza PJ (1990) Inorg Chem 29:2395

    Article  CAS  Google Scholar 

  28. Malik MA, Horany G, Kulesza PJ, Inzelt G, Kertesz V, Schmidt R, Czirok E (1998) J Electroanal Chem 452:57–62

    Article  CAS  Google Scholar 

  29. Neff VD (1985) J Electrochem Soc 132:1382–1387

    Article  CAS  Google Scholar 

  30. Kaneko M, Okada T (1988) J Electroanal Chem 255:45–52

    Article  CAS  Google Scholar 

  31. Deng Z, Smyrl WH (1991) J Electrochem Soc 138:1911

    Article  CAS  Google Scholar 

  32. Kahn O (1995) Nature 378:667

    Article  Google Scholar 

  33. Sato O, Einaga Y, Iyoda T, Fujishima A, Hashimoto K (1997) J Phys Chem B101:3903–3905

    Google Scholar 

  34. Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) J Phys Chem B102:1870–1876

    Google Scholar 

  35. Vergheese TM, Berchmans S (2004) J Electroanalchem 570:35–46

    Article  CAS  Google Scholar 

  36. Crooks RM, Chechik V, Lemon BL, Sun L, Yeung LK, Zhao M (2002) Synthesis, characterization and applications of dendrimer-encapsulated metal and semiconductor nanoparticles. In: Feldheim DL, Foss CA Jr (eds) Metal nanoparticles, synthesis, characterization and applications. Marcel Dekkar, New York, p 261

    Google Scholar 

  37. Lux F, Lemercier G, Andraud C, Schull G, Charra F (2006) Langmuir 22:10874–10876

    Article  CAS  Google Scholar 

  38. Wuelfing WP, Zamborini FP, Templeton AC, Wen X, Yoon H, Murray RW (2001) Chem Mater 13:87–95

    Article  CAS  Google Scholar 

  39. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) J Phys Chem B 108:10955–10964

    Article  CAS  Google Scholar 

  40. Attard GA (2001) J Phys Chem B 105:3158–3167

    Article  CAS  Google Scholar 

  41. Switzer JA, Kothari HM, Poizot P, Nakanishi S, Bohannan EW (2003) Nature 425:490–493

    Article  CAS  Google Scholar 

  42. Choudhury S, Bagkar N, Dey GK, Subramanian H, Yakhmi JV (2002) Langmuir 16:7409–7414

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the funding agencies Defence Research and Development Organisation, New Delhi (DRDO) and Department of Science and Technology, New Delhi (DST) for funding this project. We also acknowledge the Veeco-India Nanotechnology laboratory at JNCASR, Bangalore for the atomic force microscopic images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Berchmans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berchmans, S., Vergheese, T.M., Kavitha, A.L. et al. Electrochemical preparation of copper–dendrimer nanocomposites: picomolar detection of Cu2+ ions. Anal Bioanal Chem 390, 939–946 (2008). https://doi.org/10.1007/s00216-007-1723-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1723-z

Keywords

Navigation