Skip to main content
Log in

Copper-induced synthesis of palladium/copper popcorn nanoparticles as sensors for differential pulse voltammetric determination of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Popcorn nanoparticles (pop-NPs) consisting of a Pd/Cu alloy were synthesized using a seed-mediated growth method. The Cu and Pd atoms were co-deposited on a cubic Pd seed to reduce the energy of fault stacking. The same synthesis method with a reduced volume of the Cu(II) salt leads to Pd/Cu alloy nanoparticles with branches (br-NPs). Large Pd nanocubes (Pd NCs) were prepared via epitaxial deposition and using tetrachloropalladate (PdCl42−) only. The high-resolution TEM analysis results show the pop-NPs and br-NPs to be single crystals with \(\left(0\overline{2}1\right)\) and \(\left(02\overline{2}\right)\) planes, respectively. The results of X-ray photoelectron spectroscopy and cyclic voltammetry measurements corroborated that Pd is enriched on both surfaces. The materials were placed on a glassy carbon electrode to obtain a differential pulse voltammetric sensor for dopamine (DA). The electrochemical sensitivities are (a) 1.55 μA μM−1 cm−2 for the Pd/Cu pop-NP sensor in its linear range (15–300 μM), (b) 1.17 μA μM−1 cm−2 for the br-NP sensor in the linear range (15–200 μM), and (c) 0.97 μA μM−1 cm−2 for the Pd NC sensor in its linear range (15–100 μM). The best working potentials are near 0.10 V (vs. SCE) for all three sensors. The pop-NP-based sensor performs particularly well due to it selectivity over ascorbic and uric acid.

Pd/Cu popcorn nanoparticles (pop-NPs), nanoparticles with branches (br-NPs), and Pd nanocubes (NCs) were synthesized using seed-mediated growth methods and directly used on glassy carbon electrodes for non-enzymatic sensing of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459–1474

    Article  CAS  Google Scholar 

  2. Zhang X, Ma LX, Zhang YC (2015) Electrodeposition of platinum nanosheets on C 60 decorated glassy carbon electrode as a stable electrochemical biosensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 177:118–127

    Article  CAS  Google Scholar 

  3. Wang J, Yang BB, Zhong JT, Yan B, Zhang K, Zhai CY, Shiraishi Y, Du YK, Yang P (2017) Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. J Colloid Interface Sci 497:172–180

    Article  CAS  Google Scholar 

  4. Hsieh Y-S, Hong B-D, Lee C-L (2015) Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix. Microchim Acta 183:905–910

    Article  Google Scholar 

  5. Wang CQ, Du J, Wang HW, Zou CE, Jiang FX, Yang P, Du YK (2014) A facile electrochemical sensor based on reduced graphene oxide and au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuator B-Chem 204:302–309

    Article  CAS  Google Scholar 

  6. Hou Y, Sheng K, Lu Y, Ma C, Liu W, Men X, Xu L, Yin S, Dong B, Bai X, Song H (2018) Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Microchim Acta 185:397

    Article  Google Scholar 

  7. Zou CE, Zhong JT, Li S, Wang HW, Wang J, Yan B, Du YK (2017) Fabrication of reduced graphene oxide-bimetallic PdAu nanocomposites for the electrochemical determination of ascorbic acid, dopamine, uric acid and rutin. J Electroanal Chem 805:110–119

    Article  CAS  Google Scholar 

  8. Yan J, Liu S, Zhang Z, He G, Zhou P, Liang H, Tian L, Zhou X, Jiang H (2013) Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles. Colloids Surf B Biointerfaces 111:392–397

    Article  CAS  Google Scholar 

  9. Chen LX, Zheng JN, Wang AJ, Wu LJ, Chen JR, Feng JJ (2015) Facile synthesis of porous bimetallic alloyed PdAg nanoflowers supported on reduced graphene oxide for simultaneous detection of ascorbic acid, dopamine, and uric acid. Analyst 140:3183–3192

    Article  CAS  Google Scholar 

  10. Mahmoudian MR, Basirun WJ, Binti Alias Y (2016) Sensitive dopamine biosensor based on polypyrrole-coated palladium silver nanospherical composites. Ind Eng Chem Res 55:6943–6951

    Article  CAS  Google Scholar 

  11. Thiagarajan S, Chen SM (2007) Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 74:212–222

    Article  CAS  Google Scholar 

  12. Huang Y, Miao YE, Ji S, Tjiu WW, Liu T (2014) electrospun carbon nanofibers decorated with ag-Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl Mater Interfaces 6:12449–12456

    Article  CAS  Google Scholar 

  13. Quan ZW, Wang YX, Fang JY (2013) High-index faceted Noble metal nanocrystals. Acc Chem Res 46:191–202

    Article  CAS  Google Scholar 

  14. Huang XQ, Zhao ZP, Fan JM, Tan YM, Zheng NF (2011) Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J am Chem Soc 133:4718–4721

    Article  CAS  Google Scholar 

  15. Lai JP, Niu WX, Qi WJ, Zhao JM, Li SP, Gao WY, Luque R, Xu GB (2015) a platinum highly concave cube with one leg on each vertex as an advanced nanocatalyst for electrocatalytic applications. Chemcatchem 7:1064–1069

    Article  CAS  Google Scholar 

  16. Lai JP, Niu WX, Qi WJ, Zhao JM, Li SP, Gao WY, Luque R, Xu GB (2015) A platinum highly concave cube with one leg on each vertex as an advanced nanocatalyst for electrocatalytic applications. Chemcatchem 7:1064–1069

    Article  CAS  Google Scholar 

  17. Yu SN, Zhang L, Zhao ZJ, Gong JL (2016) Structural evolution of concave trimetallic nanocubes with tunable ultra-thin shells for oxygen reduction reaction. Nanoscale 8:16640–16649

    Article  CAS  Google Scholar 

  18. Zhang GR, Wu J, Xu BQ (2012) Syntheses of sub-30 nm au@Pd concave nanocubes and Pt-on-(au@Pd) trimetallic nanostructures as highly efficient catalysts for ethanol oxidation. J Phys Chem C 116:20839–20847

    Article  CAS  Google Scholar 

  19. Ataee-Esfahani H, Imura M, Yamauchi Y (2013) All-metal mesoporous nanocolloids: solution-phase synthesis of core-shell Pd@Pt nanoparticles with a designed concave surface. Angew Chem Int Edit 52:13611–13615

    Article  CAS  Google Scholar 

  20. Ma YX, Yin LS, Cao GJ, Huang QL, He MS, Wei WX, Zhao H, Zhang DG, Wang MY, Yang T (2018) Pt-Pd bimetal popcorn nanocrystals: enhancing the catalytic performance by combination effect of stable multipetals nanostructure and highly accessible active sites. Small 14:1703613

    Article  Google Scholar 

  21. Lim SC, Chan CY, Chen KT, Tuan HY (2019) Synthesis of popcorn-shaped gallium-platinum (GaPt3) nanoparticles as highly efficient and stable electrocatalysts for hydrogen evolution reaction. Electrochim Acta 297:288-296.21. L

  22. Lee C-L, Chiou H-P (2012) Methanol-tolerant Pd nanocubes for catalyzing oxygen reduction reaction in H2SO4 electrolyte. Appl Catal B-Environ 117:204–211

    Article  Google Scholar 

  23. Branicio PS, Zhang JY, Srolovitz DJ (2013) Effect of strain on the stacking fault energy of copper: a first-principles study. Phys Rev B 88:064104

    Article  Google Scholar 

  24. Cai J, Wang F, Lu C, Wang YY (2004) Structure and stacking-fault energy in metals Al, Pd, Pt, Ir, and Rh. Phys Rev B 69:224104

    Article  Google Scholar 

  25. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron Spectroscpy Perkin-Elmer Coporation United States of America

  26. Serov A, Asset T, Padilla M, Matanovic I, Martinez U, Roy A, Artyushkova K, Chatenet M, Maillard F, Bayer D, Cremers C, Atanassov P (2016) Highly-active Pd-cu electrocatalysts for oxidation of ubiquitous oxygenated fuels. Appl Catal B Environ 191:76–85

    Article  CAS  Google Scholar 

  27. Gholinejad M, Bahrami M, Najera C, Pullithadathil B (2018) Magnesium oxide supported bimetallic Pd/cu nanoparticles as an efficient catalyst for Sonogashira reaction. J Catal 363:81–91

    Article  CAS  Google Scholar 

  28. Sheng JL, Kang JH, Ye HQ, Xie JQ, Zhao B, Fu XZ, Yu Y, Sun R, Wong CP (2018) Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction. J Mater Chem A 6:3906–3912.28

    Article  CAS  Google Scholar 

  29. Engstfeld AK, Maagaard T, Horch S, Chorkendorff I, Stephens IEL (2018) Polycrystalline and single-crystal cu electrodes: influence of experimental conditions on the electrochemical properties in alkaline media. Chem Euro J 24:17743–17755

    Article  CAS  Google Scholar 

  30. Zhang QL, Feng JX, Wang AJ, Wei J, Lv ZY, Feng JJ (2015) A glassy carbon electrode modified with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen. Microchim Acta 182:589–595

    Article  CAS  Google Scholar 

  31. Yadav SK, Rosy OM, Goyal RN (2013) A biocompatible nano gold modified palladium sensor for determination of dopamine in biological fluids. J Electrochem Soc 161:H41–H46.33

    Article  Google Scholar 

  32. Desimoni E, Brunetti B (2013) Presenting analytical performances of electrochemical sensors. Some Suggest Electroanal 25:1645–1651

    CAS  Google Scholar 

  33. Kumar MA, Siddhardha RSS, Nived KC, Lakshminarayanan V, Ramamurthy SS (2015) Ultra-selective dopamine detection in an excess of ascorbic acid and uric acid using pristine palladium nanoparticles decorated graphene modified glassy carbon electrode. J Electrochem Soc 162:H651–H660

    Article  CAS  Google Scholar 

  34. Abdelwahab AA, Shim Y-B (2015) Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded au nanoclusters. Sens Actuator B-Chem 221:659–665

    Article  CAS  Google Scholar 

  35. Mahshid S, Li CC, Mahshid SS, Askari M, Dolati A, Yang LX, Luo SL, Cai QY (2011) Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and au nanoparticles. Analyst 136:2322–2329

    Article  CAS  Google Scholar 

  36. Wu WP, Periasamy AP, Lin GL, Shih ZY, Chang HT (2015) Palladium copper nanosponges for electrocatalytic reduction of oxygen and glucose detection. J Mater Chem A 3:9675–9681

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Ministry of Science and Technology, Taiwan, under Contract No. MOST 106-2221-E-151-039-MY3. The authors thank Mr. Hsien-Tsan Lin of the National Sun Yat-Sen University for with TEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Liang Lee.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2006 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, MH., Hong, BD., Wang, TP. et al. Copper-induced synthesis of palladium/copper popcorn nanoparticles as sensors for differential pulse voltammetric determination of dopamine. Microchim Acta 186, 718 (2019). https://doi.org/10.1007/s00604-019-3866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3866-y

Keywords

Navigation