Skip to main content
Log in

Microstructural and chemical transformation of thin Ti/Pd and TiD y /Pd bilayer films induced by vacuum annealing

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Using a combination of scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction and X-ray photoelectron spectroscopy (XPS), we made a comparative study of the high-temperature annealing impact on thin titanium deuteride (TiD y ) films covered by an ultrathin Pd layer, and on Ti/Pd bilayer films. The bilayer films were prepared under ultrahigh vacuum conditions and were in situ annealed using the same annealing procedure. It was found that the surface and the bulk morphology of both films undergo different annealing-induced transformations, leading to an extensive intermixing between the Ti and Pd layers and the formation of a new PdTi2 bimetallic phase. Energy-filtered TEM imaging and energy-dispersive X-ray spectrometry analysis, as well as XPS depth profiling all provided evidence of a different distribution of Pd and Ti in the annealed TiD y /Pd film compared with the annealed Ti/Pd film. Our results show that thermal decomposition of TiD y , as a consequence of annealing the TiD y /Pd film, modifies the intermixing process, thereby promoting Ti diffusion into the Pd-rich top layer of the TiD y film and thus providing a more likely path for the formation of the PdTi2 phase than in an annealed Ti/Pd film.

Figure Microstructural and chemical characterisation of thin TiDy/Pd film after annealing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Westlake DG, Satterthwaite CB, Weaver JH (1978) Phys Today 31:32–39

    Article  CAS  Google Scholar 

  2. Hirooka Y (1984) J Vac Sci Technol A 2:16–21

    Article  CAS  Google Scholar 

  3. Kirchheim R, Fromm E, Wicke E (eds) (1989) Metal-hydrogen systems: fundamentals and applications. Proceedings of the first international symposium combining “hydrogen in metals” and “metal hydrides” Stuttgart, 1988. Oldenburg, Munich

  4. Wedler G, Strothenk H (1966) Z Phys Chem Neue Folge 48:86–101

    CAS  Google Scholar 

  5. Malinowski ME (1979) J Vac Sci Technol 16:962–963

    Article  CAS  Google Scholar 

  6. Checchetto R, Gratton LM, Miotello A, Tomasi A, Scardi P (1988) Phys Rev B 58:4130–4137

    Article  Google Scholar 

  7. Lisowski W, van den Berg AHJ, Smithers M (1998) Surf Interface Anal 26:213–219

    Article  CAS  Google Scholar 

  8. Lisowski W, van den Berg AHJ, Leonard D, Mathieu HJ (2000) Surf Interface Anal 29:292–297

    Article  CAS  Google Scholar 

  9. Heller EMB, Suyver JF, Vredenberg AM, Boerma DO (1999) Appl Surf Sci 150:227–234

    Article  CAS  Google Scholar 

  10. Lisowski W, Keim EG, van den Berg AHJ, Smithers MA (2006) Anal Bioanal Chem 385:700–707

    Article  CAS  Google Scholar 

  11. Lisowski W (1999) Vacuum 54:13–18

    Article  CAS  Google Scholar 

  12. Duś R, Lisowski W, Nowicka E, Wolfram Z (1995) Surf Sci 322:285–292

    Google Scholar 

  13. Lisowski W, Keim EG, Smithers MA (2003) J Vac Sci Technol A 21:545–552

    Article  CAS  Google Scholar 

  14. Lisowski W, Keim EG, Smithers M (2002) Appl Surf Sci 189:148–156

    Article  CAS  Google Scholar 

  15. Anthony MT (1983) In: Briggs D, Seah MP (eds) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, Chichester, p 431

    Google Scholar 

  16. Ikeo N, Jijima Y, Niimura N, Sigematsu M, Tazawa T, Matsumoto S, Kojima K, Nagasawa Y (1991) Handbook of X-ray photoelectron spectroscopy. JEOL, Peabody

  17. Seah MP (1999) Appl Surf Sci 144–145:161–167

    Article  Google Scholar 

  18. Thornton JA (1977) Ann Rev Mater Sci 7:239–260

    Article  CAS  Google Scholar 

  19. Winter M (1993–2007) WebElements periodic table. http://www.webelements.com

  20. Patterson AL (1939) Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  21. Joint Committee on Powder Diffraction Standards, ICDD (1999) Powder diffraction file. Pd: card 46–1043, Ti: card 44–1294, TiH1.971: card 07–0370, PdTi2: card 18–0957

  22. Tadayyon SM, Fujimoto Y, Tanaka K, Doi M, Matsui M (1994) Jpn J Appl Phys 33:4697–4702

    Article  CAS  Google Scholar 

  23. Tadayyon SM, Yoshinari O, Tanaka K (1993) Jpn J Appl Phys 32:3928–3932

    Article  CAS  Google Scholar 

  24. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST Standard Reference Database 20, version 3.4. http://srdata.nist.gov/xps/

  25. Bzowski A, Sham TK (1993) Phys Rev B 48:7836–7840

    Article  CAS  Google Scholar 

  26. Andersen HH (1979) Appl Phys 18:131–140

    Article  CAS  Google Scholar 

  27. Honig RE (1962) RCA Rev 23:567–586

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Lisowski or E. G. Keim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisowski, W., Keim, E.G., Kaszkur, Z. et al. Microstructural and chemical transformation of thin Ti/Pd and TiD y /Pd bilayer films induced by vacuum annealing. Anal Bioanal Chem 389, 1489–1498 (2007). https://doi.org/10.1007/s00216-007-1594-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1594-3

Keywords

Navigation