Skip to main content
Log in

Applicability of a liquid membrane in enrichment and determination of nickel traces from natural waters

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a bulk liquid membrane method has been applied for Ni enrichment and separation from natural waters. The carrier-mediated transport was accomplished by pyridine-2-acetaldehyde benzoylhydrazone dissolved in toluene as a complexing agent. The preconcentration was achieved through pH control of source and receiving solutions via a counterflow of protons. The main variables were optimized by using a modified simplex technique. High transport efficiencies (101.2 ± 1.8–99.7 ± 4.2%) were provided by the carrier for nickel ions in a receiving phase of 0.31 mol L−1 nitric acid after 9–13 h depending on sample salinity. The precision of the method was 2.05% (without a saline matrix) and 4.04% (with 40 g L−1 NaCl) at the 95% confidence level and the detection limit of the blank was 0.015 μg L−1 Ni for detection by atomic absorption spectroscopy. The applicability of the method was tested on certified reference and real water samples with successful results, even for saline samples. The relative errors were −0.60% for certified reference materials and ranged from −0.39 to 2.90% and from 0.3 to 11.05% for real samples, obtained by comparison of inductively coupled plasma mass spectrometry and adsorptive cathodic stripping voltammetry measurements, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mester Z, Sturgeon R (eds) (2003) Comprehensive analytical chemistry, vol XLI. Sample preparation for trace element analysis. Elsevier, Amsterdam

    Google Scholar 

  2. Karjou J (2007) Spectrochim Acta Part B 62:177–181

    Article  CAS  Google Scholar 

  3. Elci L, Soylak M, Ozcan B (2003) Anal Lett 36:987–999

    Article  CAS  Google Scholar 

  4. Komjarova I, Blust R (2006) Anal Chim Acta 576:221–228

    Article  CAS  Google Scholar 

  5. Rao TP, Metilda P, Gladis JM (2005) Crit Rev Anal Chem 35:247–288

    Article  CAS  Google Scholar 

  6. Oliferova LA, Statkus MA, Tsisin GI, Wang J, Zolotov YA (2006) J Anal Chem 61:416–441

    Article  CAS  Google Scholar 

  7. Bowles KC, Apte SC, Batley GE, Hales LT, Rogers NJ (2006) Anal Chim Acta 558:237–245

    Article  CAS  Google Scholar 

  8. Parthasarathy N, Pelletier M, Buffle J (1997) Anal Chim Acta 350:183–195

    Article  CAS  Google Scholar 

  9. Buffle J, Parthasarathy N, Djane NK, Matthiasson L (2000) In: Buffle J, Horvai G (eds) In situ monitoring of aquatic systems: chemical analysis and speciation. Wiley, New York

    Google Scholar 

  10. Fontas C, Pont N, Hidalgo M, Salvado V (2006) Desalination 200:114–116

    Article  CAS  Google Scholar 

  11. Djane NK, Ndung’u K, Johnsson C, Sartz H, Tornstrom T, Mathiasson L (1999) Talanta 48:1121–1132

    Article  CAS  Google Scholar 

  12. Slaveykova VI, Parthasarathy N, Buffle J, Wilkinson KJ (2004) Sci Total Environ 328:55–68

    Article  CAS  Google Scholar 

  13. Romero R, Jönsson JA (2005) Anal Bioanal Chem 381:1452–1459

    Article  CAS  Google Scholar 

  14. Izatt RM, Clark GA, Bradshaw Lamb JD, Christensen JJ (1986) Sep Purif Methods 13:21–72

    Google Scholar 

  15. Yaftian MR, Zamani AA, Rostamnia (2006) Sep Purif Technol 49:71–75

    Article  CAS  Google Scholar 

  16. Parthasarathy J, Buffle J, Gassama N, Cuenod F (1999) Chem Anal (Warsaw) 44:455–470

    CAS  Google Scholar 

  17. Granado-Castro MD, Galindo-Riaño MD, García-Vargas M (2004) Spectrochim Acta Part B 59:577–583

    Article  CAS  Google Scholar 

  18. Granado-Castro MD, Galindo-Riaño MD, García-Vargas M (2004) Anal Chim Acta 506:81–86

    Article  CAS  Google Scholar 

  19. Alguacil FJ, Martínez S (2000) J Membr Sci 176:249–255

    Article  CAS  Google Scholar 

  20. Guyon F, Parthasarathy N, Buffle J (1999) Anal Chem 71:819–826

    Article  CAS  Google Scholar 

  21. He T, Versteeg LAM, Mulder MHV, Wessling M (2004) J Membr Sci 234:1–10

    Article  CAS  Google Scholar 

  22. Bermejo JC, Alonso M, Sastre AM, Alguacil FJ (2000) J Chem Res Synop 10:479–481

    Article  Google Scholar 

  23. Szpakowska M, Nagy O, Szymanowski J (2004) Sep Sci Technol 39:699–707

    Article  CAS  Google Scholar 

  24. Ilias S, Schimmel KA, Yezek PM (1999) Sep Sci Technol 34:1007–1019

    CAS  Google Scholar 

  25. Sadeghi S, Mohammadzadeh D, Imampur JS (2005) Anal Bioanal Chem 383:261–267

    Article  CAS  Google Scholar 

  26. Zidan ASA (2003) Phosphorus Sulfur Silicon 178:567–582

    Article  CAS  Google Scholar 

  27. Patole J, Sandbhor U, Padhye S, Deobagkar DN, Anson CE, Powell A (2003) Bioorg Med Chem Lett 13:51–55

    Article  CAS  Google Scholar 

  28. Crompton TR (1997) Toxicants in aqueous ecosystems. Wiley, Chichester

    Google Scholar 

  29. International Programme on Chemical Safety (1991) Environmental health criteria 108, nickel. Environmental health criteria monographs. Word Health Organization, Geneva

    Google Scholar 

  30. García-Vargas M, Bautista JM, Toro P (1981) Microchem J 26:557–568

    Article  Google Scholar 

  31. García-Vargas M, Hernández-Artiga MP, Pérez-Bustamante JA (1984) Anal Chim Acta 157:363–367

    Article  Google Scholar 

  32. Mongay C, Cerda V (1974) Ann Chim 64:409–412

    CAS  Google Scholar 

  33. US Environmental Protection Agency (1994) Method 3015. Microwave assisted acid digestion of aqueous samples and extracts

  34. Metrohm (2004) Determination of nickel and cobalt in sea water. Application note no. V-69. http://www.metrohm.com/infocenter/applications/notes/an_va.php4

  35. Multisimplex (1998) Multisimplex 98. Multisimplex, Karlskrona

    Google Scholar 

  36. Bayne CK, Rubin IB (eds) (1986) Practical experimental designs and optimization methods for chemists. VCH, Deerfiel Beach

    Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the University of Cádiz, Andalusia Government (AUIP fellowship) and the Latin American Cooperation Spanish Agency (AECI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María D. Galindo-Riaño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez-Lledó, F.C., Galindo-Riaño, M.D., Díaz-López, I.C. et al. Applicability of a liquid membrane in enrichment and determination of nickel traces from natural waters. Anal Bioanal Chem 389, 653–659 (2007). https://doi.org/10.1007/s00216-007-1472-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1472-z

Keywords

Navigation