Skip to main content

Advertisement

Log in

Development of a novel immunobiosensor method for the rapid detection of okadaic acid contamination in shellfish extracts

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The mouse bioassay is the methodology that is most widely used to detect okadaic acid (OA) in shellfish samples. This is one of the best-known toxins, and it belongs to the family of marine biotoxins referred to as the diarrhetic shellfish poisons (DSP). Due to animal welfare concerns, alternative methods of toxin detection are being sought. A rapid and specific biosensor immunoassay method was developed and validated for the detection of OA. An optical sensor instrument based on the surface plasmon resonance (SPR) phenomenon was utilised. A polyclonal antibody to OA was raised against OA–bovine thyroglobulin conjugate and OA–N-hydroxy succinimide ester was immobilised onto an amine sensor chip surface. The assay parameters selected for the analysis of the samples were: antibody dilution, 1/750; ratio of antibody to standard, 1:1; volume of sample injected, 25 μl min−1; flow rate, 25 μl min−1. An assay action limit of 126 ng g−1 was established by analysing of 20 shellfish samples spiked with OA at the critical concentration of 160 ng g−1, which is the action limit established by the European Union (EU). At this concentration of OA, the assay delivered coefficient of variations (CVs) of <10%. The chip surface developed was shown to be highly stable, allowing more than 50 analyses per channel. When the concentrations of OA determined with the biosensor method were compared with the values obtained by LC–MS in contaminated shellfish samples, the correlation between the two analytical methods was found to be highly satisfactory (r 2 = 0.991).

Biacore

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yasumoto T, Oshima Y, Yamaguchi M (1978) Bull Japan Soc Sci Fish 44:1249–1255

    Google Scholar 

  2. Yasumoto T, Murata M, Oshima Y, Sano M, Matsumoto GK, Clardy J (eds)(1984) Seafood toxins (ACS Symp Ser 262). American Chemical Society, Washington, DC

  3. Terao K, Ito E, Ohkusu M, Yasumoto T (1993) In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam

  4. McNabb P, Holland P, van Ginkel R, Selwood A (2004) In: Book of abstracts from the 5th Int Conf on Molluscan Shellfish Safety, 14–18 June 2003, National University of Ireland, Galway

  5. Takagi T (1984) Bull Japan Soc Sci Fish 50(8):1413–1418

    Google Scholar 

  6. Lawrence JF, Chadha RK, Ratnayake WM, Truelove JF (1994) Nat Toxins 2:318–321

    Article  CAS  Google Scholar 

  7. EC (2002) Commission Decision 2002/225/EC of 15 March 2002 laying down detailed rules for the implementation of Council Directive 91/492/EEC as regards the maximum levels and the methods of analysis of certain marine biotoxins in bivalve mollusc, echinoderms, tunicates and marine gastropods. Off J Eur Commun L75:62–66

  8. EC (1986) Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. European Communities, Brussels

  9. Ramstad H, Shen JL, Larsen S, Aune T (2001) Toxicon 39:1387–1391

    Article  CAS  Google Scholar 

  10. Nogueiras MJ, Gago-Martínez A, Paniello AI, Twohig M, James KJ, Lawrence JF (2003) Anal Bioanal Chem 377:1202–1206

    Article  CAS  Google Scholar 

  11. Rossini GP (2005) Toxicology 207:451–462

    Article  CAS  Google Scholar 

  12. Nishiwaki S, Fujiki H, Suganuma M, Furuya-Suguri H, Matsushima R, Iida Y, Ojika M, Yamada K, Uemura D, Yasumoto T, Schmitz FJ, Sugimura T (1990) Carcinogenesis 11:1837–1841

    Article  CAS  Google Scholar 

  13. Holmes CFB (1991) Toxicon 29:469–477

    Article  CAS  Google Scholar 

  14. Mountfort DO, Suzuki T, Truman P (2001) Toxicon 39:383–390

    Article  CAS  Google Scholar 

  15. Rossini GP (eds)(2000) Seafood and freshwater toxins. Marcel Dekker, New York, pp 257–288

  16. Leira F, Alvarez C, Cabado AG, Vieites JM, Vieytes MR, Botana LM (2003) Anal Biochem 317:129–135

    Article  CAS  Google Scholar 

  17. Kreuzer NP, Pravda M, O’Sullivan CK, Guilbault GG (2002) Toxicon 40:1267–1274

    Article  CAS  Google Scholar 

  18. Tang AXJ, Pravda M, Guilbault GG, Piletsky S, Turner APF (2002) Anal Chim Acta 471:33–40

    Article  CAS  Google Scholar 

  19. Gaudin V, Fontaine J, Maris P (2001) Anal Chim Acta 436:191–198

    Google Scholar 

  20. Gaudin V, Cadieu N, Sanders P (2005) Anal Chim Acta 529(1–2):273–283

    Google Scholar 

  21. Gustavsson E, Bjurling P, Degelaen J, Sternesjö Å (2002) Food Agr Immunol 14:121–131

    Article  CAS  Google Scholar 

  22. Ferguson JP, Baxter GA, McEvoy JDG, Stead S, Rawlings E, Sharman M (2002) Analyst 127:951–956

    Article  CAS  Google Scholar 

  23. Haasnoot W, Loomans E, Cazemier G, Dietrich R, Verheijen R, Bergwerff AA, Stephany RW (2002) Food Agr Immunol 14:15–27

    Article  CAS  Google Scholar 

  24. Mauriz E, Calle A, Abad A, Montoya A, Hildebrandt A, Barceló D, Lechuga LM (2006) Biosens Bioelectron 21:2129–2136

    CAS  Google Scholar 

  25. Mello LD, Kubota LT (2002) Food Chem 77:237–256

    Article  CAS  Google Scholar 

  26. Traynor IM, Plumpton L, Fodey TL, Higgins C, Elliott CT (2006) J AOAC Int 89:868–873

    CAS  Google Scholar 

  27. McCarron P, Emteborg H, Hess P (2007) Anal Bioanal Chem 387:2475–2486

    Article  CAS  Google Scholar 

  28. Usleber E, Schneider E, Terplan G (1991) Lett Appl Microb 13:275–277

    CAS  Google Scholar 

  29. Park DL (1995) J AOAC Inter 78:533–537

    CAS  Google Scholar 

  30. Carmody EP, James KJ, Kelly SS (1995) J AOAC Inter 78:1403–1408

    CAS  Google Scholar 

  31. Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, van Eugen D, Clardy J, Gopichand Y, Schmitz FJ (1981) J Am Chem Soc 103:2469–2471

    Article  CAS  Google Scholar 

  32. Takai A, Murata M, Torigoe K, Isobe M, Mieskes G, Yasumoto T (1992) J Biochem 284:539–544

    CAS  Google Scholar 

  33. Cooper J, Elliott CT, Baxter A, Hewitt SA, McEvoy JDG, McCaughey J (1998) Food Agr Immunol 10:133–142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the European project under the Sixth Framework Programme Priority 5 Food Quality and Safety (Contract No.: Detectox, 514055) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llamas, N.M., Stewart, L., Fodey, T. et al. Development of a novel immunobiosensor method for the rapid detection of okadaic acid contamination in shellfish extracts. Anal Bioanal Chem 389, 581–587 (2007). https://doi.org/10.1007/s00216-007-1444-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1444-3

Keywords

Navigation