Skip to main content
Log in

Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have synthesized and applied a nanoparticle-based pH sensor for noninvasive monitoring of intracellular pH changes induced by drug stimulation. The pH sensor is a two-fluorophore-doped nanoparticle sensor (2DFNS) that contains a pH-sensitive indicator (fluorescein isothiocyanate, FITC) and a reference dye (tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate, RuBPY). The nanoparticles have an average diameter of 42 ± 3 nm and can easily be taken up by cells for noninvasive intracellular pH measurement. The 2DFNS exhibited excellent pH sensitivity, reversibility, and a dynamic range of pH 4–7 for biological studies. We have used 2DFNS to monitor pH changes in living cells by drug stimulation. Both lysosomal pH changes in murine macrophages stimulated by chloroquine and intracellular acidification in apoptotic cancer cells were monitored in real time and with high pH sensitivity. Hela cells underwent intracellular acidification with a drop in pH from 7.2 to 6.5 after 8 h of treatment with 2 μmol/L dexamethasone, and this intracellular pH drop in the apoptotic cells was not influenced by the addition of zinc ions. The application of 2DFNS to intracellular pH measurements yields some important advantages: excellent pH sensitivity, little environmental effect on the pH dye, excellent quantification, high stability and excellent reversibility.

Scanning images of macrophages loaded with 2DFNS at different times after exposure to 200 μmol/L chloroquine. Images a and b represent fluorescence images of FITC and RuBPY in 2DFNS internalized by a macrophage, respectively. Images labeled c are bright-field images of the macrophage, and those labeled d show a and b merged

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barry MA, Reynolds JE, Eastman A (1993) Cancer Res 53:2349–2357

    CAS  Google Scholar 

  2. Li J, Eastman A (1995) J Biol Chem 270:3203–3211

    Article  CAS  Google Scholar 

  3. Caceres-Cortes J, Rajotte D, Dumouchel J, Maddad P, Hoang T (1994) J Biol Chem 269:12084–12091

    CAS  Google Scholar 

  4. Gottlieb RA, Giesing H, Zhu J, Engler RL, Babior BM (1995) Proc Natl Acad Sci USA 92:5965–5968

    Article  CAS  Google Scholar 

  5. Gottlieb RA, Nordberg J, Skowronski E, Babior BM (1995) Proc Natl Acad Sci USA 93:654–658

    Article  Google Scholar 

  6. Tan W, Shi Z, Smith S, Birnbaum D, Kopelman R (1992) Science 258:778

    Article  CAS  Google Scholar 

  7. Zen JM, Patonay G (1991) Anal Chem 63:2934–2938

    Article  CAS  Google Scholar 

  8. Chan CM, Fung CS, Wong KY, Lo W (1998) Analyst 123:1843–1847

    Article  CAS  Google Scholar 

  9. Price JM, Xu W, Demas JN, DeGraff BA (1998) Anal Chem 70:265–270

    Article  CAS  Google Scholar 

  10. Malins C, Glever HG, Keyes TE, Vos JG, Dressick WJ, MacCraith BD (2000) Sens Actuators B 67:89–95

    Article  Google Scholar 

  11. Clarke Y, Xu W, Demas JN, DeGraff BA (2000) Anal Chem 72:3468–3475

    Article  CAS  Google Scholar 

  12. Graber ML, DiLillo DC, Friedman BL, Pastoriza-Munoz E (1986) Anal Biochem 156:202–212

    Article  CAS  Google Scholar 

  13. Shalom S, Strinkovski A, Peleg G, Druckmann S, Krauss A, Lewis A, Linial M, Ottolenghi M (1997) Anal Biochem 244:256–259

    Article  CAS  Google Scholar 

  14. Xin Q, Wightman RM (1998) Anal Chem 70:1677–1681

    Article  CAS  Google Scholar 

  15. Rosenzweig Z, Kopelman R (1995) Anal Chem 67:2650–2654

    Article  CAS  Google Scholar 

  16. Hanson GT, McAnaney TB, Park ES, Rendell MEP, Yarbrough DK, Chu S, Xi L, Boxer SG, Montrose MH, Remington SJ (2002) Biochemistry 41:15477–15488

    Article  CAS  Google Scholar 

  17. Sasaki K, Shi Z, Kopelman R, Masuhara H (1996) Chem Lett 8:141–142

    Article  Google Scholar 

  18. Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Anal Chem 71:4831–4836

    Article  CAS  Google Scholar 

  19. Clark HA, Kopelman R, Tjalkens R, Philbert MA (1999) Anal Chem 71:4837–4843

    Article  CAS  Google Scholar 

  20. Ji J, Rosenzweig N, Griffin C, Rosenzweig Z (2000) Anal Chem 72:3497–3503

    Article  CAS  Google Scholar 

  21. McNamara KP, Nguyen T, Dumitrascu G, Ji J, Rosenzweig N, Rosenzweig Z (2001) Anal Chem 73:3240–3246

    Article  CAS  Google Scholar 

  22. Nalwa HS (ed) (2004) Encyclopedia of nanoscience and nanotechnology. American Scientific, Los Angeles, CA

  23. He X, Wang K, Tan W, Chen J, Duan J, Yuan Y, Lin X (2005) Chin Sci Bulletin 50:2185–2190

    Google Scholar 

  24. Santra S, Zhang PS, Wang K, Tapec R, Tan W (2001) Anal Chem 73:4988–4993

    Article  CAS  Google Scholar 

  25. He X, Duan J, Wang K, Tan W, Lin X, He C (2004) J NanoSci Nanotechnol 4:585–589

    Article  CAS  Google Scholar 

  26. Wang L, Yang C, Tan W (2005) Nano Lett 51:37–43

    Article  Google Scholar 

  27. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Biochemistry 18:2210–2218

    Article  CAS  Google Scholar 

  28. Engeland MV, Nieland LJW, Ramaekers FCS, Schutte B, Reutelingsperger CPM (1998) Cytometry 31:1–9

    Article  Google Scholar 

  29. Lukas GL, Rotstein OD, Grinstein SJ (1991) Biol Chem 266:24540–24548

    Google Scholar 

  30. Bassoe CF, Laerum OD, Glett J, Hopen G, Haneberg B, Solberg CO (1983) Cytometry 4:254–262

    Article  CAS  Google Scholar 

  31. Schmid I, Uittenbogaart CH, Keld B, Giorgi JV, Immunol J (1994) Methods 170:145–157

    CAS  Google Scholar 

  32. Barry BA, Eastman A (1993) Arch Biochem Biophys 300:440–450

    Article  CAS  Google Scholar 

  33. Brown DG, Sun XM, Cohen GM (1993) J Biol Chem 268:3037–3039

    CAS  Google Scholar 

  34. Giannakis C, Forbes IJ, Zalewski PD (1991) Biochem Biophys Res Commun 181:915–920

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Basic Research Program (2002CB513100-10), Key Project Foundation of China Education Ministry (107084), Key Project of International Technologies Collaboration Program of China (2003DF000039), Program for New Century Excellent Talents in University (NCET), National Science Foundation of P.R.China (90606003, 20405005) and Outstanding Youth Foundation of Hunan Province (06JJ10004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., He, X., Wang, K. et al. Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal Bioanal Chem 388, 645–654 (2007). https://doi.org/10.1007/s00216-007-1244-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1244-9

Keywords

Navigation