Skip to main content
Log in

Adsorption and self-assembly of aromatic carboxylic acids on Au/electrolyte interfaces

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The adsorption and self-assembly of benzoic acid (BA), isophthalic acid (IA), and trimesic acid (TMA) on Au(111) single crystals and on Au(111-25 nm) quasi-single crystalline film electrodes have been investigated in 0.1 M HClO4 by combining in situ surface-enhanced infrared reflection absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM) with cyclic voltammetry. All three acids are physisorbed on the electrode surface in a planar orientation at negative charge densities. Excursion to positive charge densities (or more positive potentials) causes an orientation change from planar to perpendicular. Chemisorbed structures are formed through the coordination of a deprotonated carboxyl group to the positively charged electrode surface. The three acid molecules assemble in different ordered patterns, which are controlled by π-stacking (BA) or intermolecular hydrogen bonds between COOH groups (IA, TMA). A detailed analysis of the potential and time dependencies of the ν(C=O), νs(OCO), and ν(C–OH) vibration modes shows that the strength of lateral interactions increases upon chemisorption with an increasing number of COOH groups in the sequence of BA<IA<TMA. The vibration bands shift to higher wavenumbers due to dipole–dipole coupling, Stark tuning, and electron back donation from the electrode to COO. In addition, an “indirect” electron donation to the COOH groups takes place via the conjugated molecular skeleton superimposed on the intermolecular hydrogen bonding.

In-situ STM images of the physisorbed and chemisorbed adlayers of isophthalic acid on Au(111)-(1 × 1), the corresponding cyclic voltammogram and principle of the ATR-SEIRAS set-up

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bailey M, Brown CJ (1967) Acta Crystallogr B 22:387

    Article  CAS  Google Scholar 

  2. Alcala R, Martinez-Carrera S (1972) Acta Crystallogr B 25:1671

    Article  Google Scholar 

  3. De Feyter S, Gesquiere A, Abdel-Mottaleb MM, Grim PCM, De Shryver FC, Meiners C, Sieffert M, Valiyaveettil S, Müllen K (2000) Acc Chem Res 33:520

    Article  Google Scholar 

  4. Melendres R, Hamilton AD (1998) Top Curr Chem 197:97

    Google Scholar 

  5. Barth JV, Costantini G, Kern K (2005) Nature 437:671

    Article  CAS  Google Scholar 

  6. Herbstein FH (1996) In: Atwood JL, MacNico DD, Vögtle DD, Lehn JM (eds) Comprehenive supramolecular chemistry, vol 6. Pergamon, New York, pp 61

    Google Scholar 

  7. Kolotuchin SV, Thiessen PA, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1999) Chem Eur J 5(9):2537

    Article  CAS  Google Scholar 

  8. Chatterjee S, Pedireddi VR, Ranganathan A, Rao CNR (2000) J Mol Structure 520:107

    Article  CAS  Google Scholar 

  9. Barth JV, Wechesser J, Lin N, Dmitriev A, Kern K (2003) Appl Phys A 76:645

    Article  CAS  Google Scholar 

  10. Ermer O, Neudörfl J (2001) Chem Eur J 7:4961

    Article  CAS  Google Scholar 

  11. Dai JC, Hu SM, Wu XT, Fu ZY, Du WX, Zhang HH, Sun RQ (2003) New J Chem 27:94

    Article  Google Scholar 

  12. Melendez RE, Shrama CVK, Zaworotko MJ, Bauer C, Rogers RD (1996) Angew Chem Int Ed Engl 35:2213

    Article  CAS  Google Scholar 

  13. Lin N, Dmitriev A, Weckesser J, Barth JV, Kern K (2002) Angew Chem Int Ed Engl 41:4779

    Article  CAS  Google Scholar 

  14. Messina P, Dmitriev A, Lin N, Spillmann H, Abel M, Barth JV, Kern K (2002) J Am Chem Soc 124:14000

    Article  CAS  Google Scholar 

  15. Ishikawa Y, Ohira A, Sakata M, Hirayama C, Kunitake MJ (2002) Chem Soc Chem Commun 2652

  16. Su GJ, Zhang HM, Wan LJ, Bai CL, Wandlowski T (2004) J Phys Chem B 108:1931

    Article  CAS  Google Scholar 

  17. Ikezawa Y, Sekiguchi R, Kitazume T (2000) Electrochim Acta 46:731

    Article  CAS  Google Scholar 

  18. Li HQ, Roscoe SG, Lipkowski J (1999) J Electroanal Chem 478:67

    Article  CAS  Google Scholar 

  19. Ikezawa Y, Yoshida A, Sekiguchi R (2000) Electrochim Acta 46:769

    Article  CAS  Google Scholar 

  20. Lee MW, Kim MS, Kim K (1997) J Mol Struct 415:93

    Article  CAS  Google Scholar 

  21. Dretschkow T, Wandlowski T (2003) Top Appl Phys 85:259

    CAS  Google Scholar 

  22. Schultz ZD, Gewirth AA (2005) Anal Chem 77:7373

    Article  CAS  Google Scholar 

  23. Wandlowski T, Ataka K, Pronkin S, Diesing D (2004) Electrochim Acta 49:1233

    Article  CAS  Google Scholar 

  24. Pronkin S, Wandlowski T (2003) J Electroanal Chem 550–551:131

    Article  Google Scholar 

  25. Li HQ, Roscoe SG, Lipkowski J (2000) J Solution Chem 29:987

    Article  CAS  Google Scholar 

  26. Osawa M, Ikeda M (1991) J Phys Chem 95:9914

    Article  CAS  Google Scholar 

  27. Han B, Li Z, Pronkin S, Wandlowski T (2004) Can J Chem 82(10):1481

    Article  CAS  Google Scholar 

  28. Li Z, Han B, Wandlowski T (2005) Langmuir 21:6915

    Article  CAS  Google Scholar 

  29. Li Z, Han B, Wandlowski T (2007) (in preparation)

  30. de Feyter S, Gesquiere A, Klapper M, Müllen K, Schryver FC (2003) Nano Lett 3:1485

    Article  Google Scholar 

  31. Arenas JF, Marcos JI (1979) Spectrochim Acta 35A:355

    CAS  Google Scholar 

  32. Gonzalez-Sanchez F (1957) Spectrochim Acta 12:17

    Article  Google Scholar 

  33. Lide DR (ed) (2001) In: Handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton, pp 8–45

    Google Scholar 

  34. Dean JA (1985) In: Lange’s handbook of chemistry, 13th edn. McGraw-Hill, pp 5–42

  35. Osawa M (1997) Bull Chem Soc Jpn 70:2861

    Article  CAS  Google Scholar 

  36. Osawa M (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Theory and instrumentation. Wiley, Chichister, p 785

    Google Scholar 

  37. Nichols R (1992) In: Lipkowski J, Ross PN (eds) Adsorption of molecules at electrodes. VCH, New York, p 347

    Google Scholar 

  38. Lambert DK (1996) Electrochim Acta 41:623

    Article  CAS  Google Scholar 

  39. Ashley K, Pons S (1988) Chem Rev 88:673

    Article  CAS  Google Scholar 

  40. Ataka K, Osawa M (1999) J Electroanal Chem 460:188

    Article  CAS  Google Scholar 

  41. Wandlowski T, Ataka K, Mayer D (2002) Langmuir 18:4331

    Article  CAS  Google Scholar 

  42. Noda H, Wan LJ, Osawa M (2001) Phys Chem Chem Phys 3:3336

    Article  CAS  Google Scholar 

  43. Kwon YJ, Son DH, Ahn SJ, Kim MS, Kim K (1994) J Phys Chem 98:8481

    Article  CAS  Google Scholar 

  44. Kim SH, Ahn SJ, Kim K (1996) J Phys Chem 100:7174

    Article  CAS  Google Scholar 

  45. Colthup NB, Daley LH, Wiberly SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, Boston

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Volkswagen foundation under grant No. I80–879, IFMIT and the Research Center Jülich. The authors acknowledge the skilful help of U. Linke and of H. J. Bierfeld in preparing the gold single crystals and gold film electrodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wandlowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B., Li, Z. & Wandlowski, T. Adsorption and self-assembly of aromatic carboxylic acids on Au/electrolyte interfaces. Anal Bioanal Chem 388, 121–129 (2007). https://doi.org/10.1007/s00216-007-1166-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1166-6

Keywords

Navigation