Skip to main content
Log in

Detection of single-molecule DNA hybridization by using dual-color total internal reflection fluorescence microscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We examined the use of prism-type simultaneous dual-color total internal reflection fluorescence microscopy (TIRFM) to probe DNA molecules at the single-molecule level. The system allowed the direct detection of the complementary interactions between single-stranded probe DNA molecules (16-mer) and various lengths of single-stranded target DNA molecules (16-mer and 55-mer) that had been labeled with different fluorescent dyes (Cy3, Cy5, and fluorescein). The polymer-modified glass substrate and the extent of DNA probe immobilization were easily characterized either with standard TIRFM or with atomic force microscopy. However, only dual-color TIRFM could provide unambiguous images of individual single-stranded target DNA molecules hybridized with the correct sequence in the range of fM–aM. Succinic anhydride showed low RMS roughness and was found to be an optimal blocking reagent against non-specific adsorption, with an efficiency of 92%. This study provides a benchmark for directly monitoring the interactions and the detection of co-localization of two different DNA molecules and can be applied to the development of a nanoarray biochip at the single-molecule level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Y, Ke Y, Yan H (2005) J Am Chem Soc 127:17140–17141

    Article  CAS  Google Scholar 

  2. Mosher C, Lynch M, Nettikadan S, Henderson W, Kristmundsdottir A, Clark MW, Henderson E (2000) J Assoc Lab Automat 5:75–78

    Article  CAS  Google Scholar 

  3. So H-M, Won K, Kim YH, Kim B-K, Ryu BH, Na PS, Kim H, Lee J-O (2005) J Am Chem Soc 127:11906–11907

    Article  CAS  Google Scholar 

  4. Lee K-B, Lim J-H, Mirkin CA (2003) J Am Chem Soc 125:5588–5589

    Article  CAS  Google Scholar 

  5. Lee K-B, Park S-J, Mirkin CA, Smith JC, Mrksich M (2002) Science 295:1702–1705

    Article  CAS  Google Scholar 

  6. Lim J-H, Ginger DS, Lee K-B, Heo J, Nam J-M, Mirkin CA (2003) Angew Chem Int Ed 42:2309–2312

    Article  CAS  Google Scholar 

  7. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Science 283:661–663

    Article  CAS  Google Scholar 

  8. Ishijima A, Yanagida T (2001) Trends Biochem Sci 26:438–444

    Article  CAS  Google Scholar 

  9. Sako Y, Yanagida T (2003) Nat Rev Mol Cell Biol Suppl SS1–SS5

  10. Sako Y, Minoghchi S, Yanagida T (2000) Nat Cell Biol 2:168–172

    Article  CAS  Google Scholar 

  11. Hibino K, Watanabe TM, Kozuka J, Iwane AH, Okada T, Kataoka T, Yanagida T, Sako Y (2003) Chemphyschem 4:748–753

    Article  CAS  Google Scholar 

  12. Kang SH, Shortreed MR, Yeung ES (2001) Anal Chem 73:1091–1099

    Article  CAS  Google Scholar 

  13. Jeong S, Park S-K, Chang JK, Kang SH (2005) Bull Korean Chem Soc 26:979–982

    Article  CAS  Google Scholar 

  14. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Nature 374:555–559

    Article  CAS  Google Scholar 

  15. Xu X, Yeung ES (1997) Science 275:1106–1109

    Article  CAS  Google Scholar 

  16. Xu X-H, Yeung ES (1998) Science 281:1650–1653

    Article  CAS  Google Scholar 

  17. Murakoshi HR, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A (2004) Proc Natl Acad Sci (USA) 101:7317–7322

    Article  CAS  Google Scholar 

  18. Ikuko K-H, Ken R, Takahiro F, Ryota I, Hideji M, Rinshi SK (2005) Biophys J 88:2126–2136

    Article  Google Scholar 

  19. Schmoranzer J, Simon SM (2003) Mol Biol Cell 14:1558–1569

    Article  CAS  Google Scholar 

  20. Liu S-F, Li Y-F, Li J-R, Jiang L (2005) Biosens Bioelectron 21:789–795

    Article  Google Scholar 

  21. Itakura S-F, Rossi JJ, Wallace RB (1984) Annu Rev Biomed 53:323–356

    Article  CAS  Google Scholar 

  22. Schena M, Shalon D, Davis RW, Brown PO (1995) Science 270:467–470

    Article  CAS  Google Scholar 

  23. Eisen MB, Brown PO (1999) Meth Enzymol 303:179–205

    Article  CAS  Google Scholar 

  24. Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes JE, Snesrud E, Lee N, Quackenbush J (2000) Biotechniques 29:548–550

    CAS  Google Scholar 

  25. Diehl F, Grahlmann S, Beier M, Hoheisel JD (2001) Nucleic Acids Res 29:e38

    Article  CAS  Google Scholar 

  26. Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G (1999) Nat Genet 21:15–19

    Article  CAS  Google Scholar 

  27. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Nat Genet 21:10–14

    Article  CAS  Google Scholar 

  28. Steel AB, Levicky RL, Herne TM, Tarlov MJ (2000) Biophys J 79:975–981

    Article  CAS  Google Scholar 

  29. http://probes.invitrogen.com/lit/catalog/3/sections/1783.html

Download references

Acknowledgment

The authors wish to express their gratitude to Dr. B.-H. Chung at Korean Research Institute of Bioscience and Biotechnology (KRIBB) for his assistance with the Dual-View system. This work was supported by a grant from the Basic Research Program of the Korea Science & Engineering Foundation (R01-2004-000-10056-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Ho Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.H., Kim, YJ. & Yeung, E.S. Detection of single-molecule DNA hybridization by using dual-color total internal reflection fluorescence microscopy. Anal Bioanal Chem 387, 2663–2671 (2007). https://doi.org/10.1007/s00216-007-1134-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1134-1

Keywords

Navigation