Skip to main content

Single-Molecule Strategies for DNA and RNA Diagnostics

  • Chapter
RNA and DNA Diagnostics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Since the discovery of the DNA structure more than 60 years ago, the use of fluorescence tools for molecular diagnostics of nucleic acids has experienced an astonishing growth. In particular, during the last decade, the development of specific techniques to detect and analyse the structure and dynamics of nucleic acids at single-molecule level has revolutionised the field, and now it is possible to sequence a complete genome in record-breaking time and to get insights into structure and function of nucleic acids with an unprecedented level of detail. In this chapter, we start by reviewing the basic concepts regarding state-of-the-art single-molecule diagnostics of nucleic acids, and we describe in detail the most recent advances on the field, ranging from DNA sequencing and nucleic acid-based sensing to the analysis of functional RNAs involved in gene regulation and catalysis. The final sections are devoted to explore the latest RNA aptamers for imaging live cells and the next generation of hybrid technologies based on real-time manipulation of their structure and dynamics one at a time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allnér O, Nilsson L, Villa A (2013) Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study. RNA 19:916–926

    PubMed Central  PubMed  Google Scholar 

  • Ambrus A, Chen D, Dai J et al (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andresen M, Stiel AC, Trowitzsch S et al (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA 104:13005–13009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armond R, Wood S, Sun D et al (2005) Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter. Biochemistry 44:16341–16350

    PubMed  Google Scholar 

  • Bajaj P, Hammann C (2014) Characterization of hairpin ribozyme reactions. Methods Mol Biol 1103:97–111

    CAS  PubMed  Google Scholar 

  • Bastet L, Dubé A, Massé E et al (2011) New insights into riboswitch regulation mechanisms. Mol Microbiol 80:1148–1154

    CAS  PubMed  Google Scholar 

  • Batey RT, Gilbert SD, Montange RK (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432:411–415

    CAS  PubMed  Google Scholar 

  • Benesch RE, Benesch R (1953) Enzymatic removal of oxygen for polarography and related methods. Science 118:447–448

    CAS  PubMed  Google Scholar 

  • Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262:1422–1425

    CAS  PubMed  Google Scholar 

  • Biffi G, Tannahill D, McCafferty J et al (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5:182–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blouin S, Craggs TD, Lafontaine DA et al (2009a) Functional studies of DNA-protein interactions using FRET techniques. Methods Mol Biol 543:475–502

    CAS  PubMed  Google Scholar 

  • Blouin S, Mulhbacher J, Penedo JC et al (2009b) Riboswitches: ancient and promising genetic regulators. ChemBioChem 10:400–416

    CAS  PubMed  Google Scholar 

  • Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24:1558–1564

    CAS  PubMed  Google Scholar 

  • Bokinsky G, Rueda D, Misra VK et al (2003) Single-molecule transition-state analysis of RNA folding. Proc Natl Acad Sci USA 100:9302–9307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks TA, Kendrick A, Hurley L (2010) Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J 277:3459–3469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burge S, Parkinson GN, Hazel P et al (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butcher SE, Allain FHT, Feigon J (1999) Solution structure of the loop B domain from the hairpin ribozyme. Nat Struct Biol 6:212–216

    CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    CAS  PubMed  Google Scholar 

  • Chandradoss SD, Haagsma AC, Lee YK et al (2014) Surface passivation for single-molecule protein studies. J Vis Exp 86:1–8

    Google Scholar 

  • Cho EJ, Lee JW, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264

    CAS  Google Scholar 

  • Cochrane JC, Strobel SA (2008) Catalytic strategies of self-cleaving ribozymes. Acc Chem Res 41:1027–1035

    CAS  PubMed  Google Scholar 

  • Cogoi S, Xodo LE (2006) G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res 34:2536–2549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dai J, Dexheimer TS, Chen D et al (2006) An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc 128:1096–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dai J, Carver M, Punchihewa C et al (2007) Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35:4927–4940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dalgarno PA, Bordello J, Morris R et al (2013) Single-molecule chemical denaturation of riboswitches. Nucleic Acids Res 41:4253–4265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deigan KE, Ferré-D’Amaré AR (2011) Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res 44:1329–1338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delfosse V, Bouchard P, Bonneau E et al (2010) Riboswitch structure: an internal residue mimicking the purine ligand. Nucleic Acids Res 38:32057–32068

    Google Scholar 

  • Dempsey GT, Bates M, Kowtoniuk WE et al (2009) Photoswitching mechanism of cyanine dyes. J Am Chem Soc 131:18192–18193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson RM, Cubitt AB, Tsien RY et al (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388:355–358

    CAS  PubMed  Google Scholar 

  • Ditzler MA, Alemán EA, Rueda D et al (2007) Focus on function: single molecule RNA enzymology. Biopolymers 87:302–316

    CAS  PubMed  Google Scholar 

  • Dulin D, Lipfert J, Moolman MC et al (2013) Studying genomic processes at the single-molecule level: introducing the tools and applications. Nat Rev Genet 14:9–22

    CAS  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  PubMed  Google Scholar 

  • Enderlein J, Gregor I, Patra D et al (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr Pharmaceut Biotech 5:155–161

    CAS  Google Scholar 

  • Eschbach SH, St-Pierre P, Penedo JC et al (2012) Folding of the SAM-I riboswitch: a tale with a twist. RNA Biol 9:535–541

    CAS  PubMed  Google Scholar 

  • Fazal FM, Block SM (2011) Optical tweezers study life under tension. Nat Photon 5:318–321

    CAS  Google Scholar 

  • Fernando H, Reszka AP, Huppert J et al (2006) A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry 45:7854–7860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferré-D’Amaré AR (2010) The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA. Q Rev Biophys 43:423–447

    PubMed Central  PubMed  Google Scholar 

  • Fiegland LR, Garst AD, Batey RT et al (2012) Single-molecule studies of the lysine riboswitch reveal effector-dependent conformational dynamics of the aptamer domain. Biochemistry 51:9223–9233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Funatsu T, Harada Y, Tokunaga M et al (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–559

    CAS  PubMed  Google Scholar 

  • Gilbert SD, Batey RT (2006) Riboswitches: fold and function. Chem Biol 13:805–807

    CAS  PubMed  Google Scholar 

  • Greenleaf WJ, Frieda KL, Foster DA et al (2008) Direct observation of hierarchical folding in single riboswitch aptamers. Science 319:630–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grundy FJ, Lehman SC, Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci USA 100:12057–12062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T et al (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    CAS  PubMed  Google Scholar 

  • Gurunathan K, Levitus M (2008) Applications of fluorescence correlation spectroscopy to the study of nucleic acid conformational dynamics. Prog Nucleic Acid Res Mol Biol 82:33–69

    CAS  PubMed  Google Scholar 

  • Ha T (2014) Single-molecule methods leap ahead. Nat Methods 11:1015–1018

    CAS  PubMed  Google Scholar 

  • Ha T, Enderle T, Ogletree DF et al (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 95:6264–6268

    Google Scholar 

  • Haeusler AR, Donnelly CJ, Periz G et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haller A, Rieder U, Aigner M et al (2011a) Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7:393–400

    CAS  PubMed  Google Scholar 

  • Haller A, Soulière MF, Micura R (2011b) The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44:1339–1348

    CAS  PubMed  Google Scholar 

  • Haller A, Altman RB, Soulière MF et al (2013) Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proc Natl Acad Sci USA 110:4188–4193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han KY, Leslie BJ, Fei J et al (2013) Understanding the photophysics of the Spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J Am Chem Soc 135:19033–19038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heppell B, Mulhbacher J, Penedo JC et al (2009) Application of fluorescence measurements for characterization of riboswitch-ligand interactions. Methods Mol Biol 540:25–37

    CAS  PubMed  Google Scholar 

  • Heppell B, Blouin S, Dussault AM et al (2011) Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Nat Chem Biol 7:384–392

    CAS  PubMed  Google Scholar 

  • Hohlbein J, Craggs TD, Cordes T (2014) Alternating-laser excitation: single-molecule FRET and beyond. Chem Soc Rev 43:1156–1171

    CAS  PubMed  Google Scholar 

  • Hohng S, Joo C, Ha T (2004) Single-molecule three-color FRET. Biophys J 87:1328–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hohng S, Zhou R, Nahas MK et al (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the Holliday junction. Science 318:279–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res Camb 5:282–304

    Google Scholar 

  • Holmstrom ED, Nesbitt DJ (2014) Single-molecule fluorescence resonance energy transfer studies of the human telomerase RNA pseudoknot: temperature-/urea-dependent folding kinetics and thermodynamics. J Phys Chem B 118:3853–3863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen JA, McCarthy TJ, Soukup GA et al (2006) Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol 13:517–523

    CAS  PubMed  Google Scholar 

  • Joo C, McKinney SA, Lilley DMJ et al (2004) Exploring rare conformational species and ionic effects in DNA Holliday junctions using single-molecule spectroscopy. J Mol Biol 341:739–751

    CAS  PubMed  Google Scholar 

  • Joo C, Balci H, Ishitsuka Y et al (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    CAS  PubMed  Google Scholar 

  • Jung J, Van Orden A (2005) Folding and unfolding kinetics of DNA hairpins in flowing solution by multiparameter fluorescence correlation spectroscopy. J Phys Chem B 109:3648–3657

    CAS  PubMed  Google Scholar 

  • Kapanidis AN, Laurence TA, Lee NK et al (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38:523–533

    CAS  PubMed  Google Scholar 

  • Karunatilaka KS, Rueda D (2009) Single-molecule fluorescence studies of RNA: a decade’s progress. Chem Phys Lett 476:1–10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karymov MA, Daniel D, Sankey OF et al (2005) Holliday junction dynamics and branch migration: single-molecule analysis. Proc Natl Acad Sci USA 102:8186–8191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karymov MA, Bogdanov A, Lyubchenko YL (2008) Single molecule fluorescence analysis of branch migration of Holliday junctions: effect of DNA sequence. Biophys J 95:1239–1247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kazantsev AV, Pace NR (2006) Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol 4:729–740

    CAS  PubMed  Google Scholar 

  • Kim J, Doose S, Neuweiler H et al (2006) The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy. Nucleic Acids Res 34:2516–2527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SA, Heinze KG, Schwille P (2007a) Fluorescence correlation spectroscopy in living cells. Nat Methods 4:963–973

    CAS  PubMed  Google Scholar 

  • Kim HK, Rasnik I, Liu J et al (2007b) Dissecting metal ion-dependent folding and catalysis of a single DNAzyme. Nat Chem Biol 3:763–768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ et al (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31:147–157

    CAS  PubMed  Google Scholar 

  • Kudryavtsev V, Felekyan S, Wozniak AK et al (2007) Monitoring dynamic systems with multiparameter fluorescence imaging. Anal Bioanal Chem 387:71–82

    CAS  PubMed  Google Scholar 

  • Kühnemuth R, Seidel CAM (2001) Principles of single molecule multiparameter fluorescence spectroscopy. Single Mol 2:251–254

    Google Scholar 

  • Kurzban G, Bayer E, Wilchek M et al (1991) The quaternary structure of streptavidin in urea. J Biol Chem 266:14470–14477

    CAS  PubMed  Google Scholar 

  • Lang MJ, Fordyce PM, Block SM (2003) Combined optical trapping and single-molecule fluorescence. J Biol 2:6

    PubMed Central  PubMed  Google Scholar 

  • Lee JY, Okumus B, Kim DS, Ha T (2005a) Extreme conformational diversity in human telomeric DNA. Proc Natl Acad Sci USA 102:18938–18943

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee NK, Kapanidis AN, Wang Y et al (2005b) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88:2939–2953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Lee S, Ragunathan K et al (2010) Single-molecule four-color FRET. Angew Chem 122:10118–10121

    Google Scholar 

  • Lemay JF, Lafontaine DA (2007) Core requirements of the adenine riboswitch aptamer for ligand binding. RNA 13:339–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemay JF, Penedo JC, Tremblay R et al (2006) Folding of the adenine riboswitch. Chem Biol 13:857–868

    CAS  PubMed  Google Scholar 

  • Lemay JF, Penedo JC, Mulhbacher J et al (2009) Molecular basis of RNA-mediated gene regulation on the adenine riboswitch by single-molecule approaches. Methods Mol Biol 540:65–76

    CAS  PubMed  Google Scholar 

  • Lemay JF, Desnoyers G, Blouin S et al (2011) Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet 7:e1001278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lilley DMJ (2005) Structure, folding and mechanisms of ribozymes. Curr Opin Struct Biol 15:313–323

    CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91

    CAS  PubMed  Google Scholar 

  • Liu Y, West SC (2004) Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 5:937–944

    CAS  PubMed  Google Scholar 

  • Magde D, Webb WW, Elson E (1972) Thermodynamic fluctuations in a reacting system–Measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    CAS  Google Scholar 

  • Maizels N, Gray LT (2013) The G4 genome. PLoS Genet 9:e1003468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandal M, Breaker RR (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35

    CAS  PubMed  Google Scholar 

  • Mandal M, Lee M, Barrick JE et al (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279

    CAS  PubMed  Google Scholar 

  • Margittai M, Widengren J, Schweinberger E et al (2003) Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc Natl Acad Sci USA 100:15516–15521

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCluskey K, Shaw E, Lafontaine DA et al (2014) Single-molecule fluorescence of nucleic acids. Methods Mol Biol 1076:759–791

    CAS  PubMed  Google Scholar 

  • McDowell SE, Jun JM, Walter NG (2010) Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations. RNA 16:2414–2426

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKinney SA, Déclais AC, Lilley DMJ, Ha T (2003) Structural dynamics of individual Holliday junctions. Nat Struct Biol 10(2):93–97

    CAS  PubMed  Google Scholar 

  • McKinney SA, Tan E, Wilson TJ et al (2004) Single-molecule studies of DNA and RNA four-way junctions. Biochem Soc Trans 32:41–45

    CAS  PubMed  Google Scholar 

  • McLuckie KIE, Di Antonio M, Zecchini H et al (2013) G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J Am Chem Soc 135:9640–9643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Membrino A, Paramasivam M, Cogoi S et al (2010) Cellular uptake and binding of guanidine-modified phthalocyanines to KRAS/HRAS G-quadruplexes. Chem Commun 46:625–627

    CAS  Google Scholar 

  • Mironov AS, Gusarov I, Rafikov R et al (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756

    CAS  PubMed  Google Scholar 

  • Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62:2535–2538

    CAS  PubMed  Google Scholar 

  • Monico C, Capitanio M, Belcastro G et al (2013) Optical methods to study protein-DNA interactions in vitro and in living cells at the single-molecule level. Int J Mol Sci 14:3961–3992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montange RK, Batey RT (2008) Riboswitches: emerging themes in RNA structure and function. Annu Rev Biophys 37:117–133

    CAS  PubMed  Google Scholar 

  • Mulhbacher J, Lafontaine DA (2007) Ligand recognition determinants of guanine riboswitches. Nucleic Acids Res 35:5568–5580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mulhbacher J, St-Pierre P, Lafontaine DA (2010) Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol 10:551–556

    CAS  PubMed  Google Scholar 

  • Nahas MK, Wilson TJ, Hohng S et al (2004) Observation of internal cleavage and ligation reactions of a ribozyme. Nat Struct Mol Biol 11:1107–1113

    CAS  PubMed  Google Scholar 

  • Nahvi A, Sudarsan N, Ebert MS et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049

    CAS  PubMed  Google Scholar 

  • Okumus B, Wilson TJ, Lilley DMJ et al (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys J 87:2798–2806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paige JS, Nguyen-Duc T, Song W et al (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335:1194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palets D, Lushnikov AY, Karymov MA et al (2010) Effect of single-strand break on branch migration and folding dynamics of Holliday junctions. Biophys J 99:1916–1924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    CAS  PubMed  Google Scholar 

  • Patterson GH, Knobel SM, Sharif WD et al (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Penedo JC, Wilson TJ, Jayasena SD et al (2004) Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA 10:880–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira MJB, Nikolova EN, Hiley SL et al (2008) Single VS ribozyme molecules reveal dynamic and hierarchical folding toward catalysis. J Mol Biol 382:496–509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rankin S, Peszka AP, Huppert J et al (2005) Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc 127:10584–10589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rigler R, Mets U, Windengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175

    CAS  Google Scholar 

  • Roth A, Winkler WC, Regulski EE et al (2007) A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol 14:308–317

    CAS  PubMed  Google Scholar 

  • Roth A, Weinberg Z, Chen AG et al (2014) A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol 10:56–60

    CAS  PubMed  Google Scholar 

  • Rothwell PJ, Berger S, Kensch O et al (2003) Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes. Proc Natl Acad Sci USA 100:1655–1660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabir T, Schröder GF, Toulmin A et al (2011) Global structure of forked DNA in solution revealed by high-resolution single-molecule FRET. J Am Chem Soc 133:1188–1191

    CAS  PubMed  Google Scholar 

  • Savinov A, Perez CF, Block SM (2014) Single-molecule studies of riboswitch folding. Biochim Biophys Acta 1839:1030–1045

    CAS  PubMed  Google Scholar 

  • Schuler B, Hofmann H (2013) Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Curr Opin Struct Biol 23:36–47

    CAS  PubMed  Google Scholar 

  • Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serganov A, Yuan YR, Pikovskaya O et al (2004) Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol 11:1729–1741

    CAS  PubMed  Google Scholar 

  • Shirude PS, Balasubramanian S (2008) Single molecule conformational analysis of DNA G-quadruplexes. Biochimie 90:1197–1206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirude PS, Okumus B, Ying L et al (2007) Single-molecule conformational analysis of G-quadruplex formation in the promoter DNA duplex of the proto-oncogene c-kit. J Am Chem Soc 129:7484–7485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siddiqui-Jain A, Grand CL, Bearss DJ et al (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 99:11593–11598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sigal N, Alberts B (1972) Genetic recombination: the nature of a crossed strand-exchange between two homologous DNA molecules. J Mol Biol 71:789–792

    CAS  PubMed  Google Scholar 

  • Sisamakis E, Valeri A, Kalinin S et al (2010) Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514

    CAS  PubMed  Google Scholar 

  • Sosnick TR, Pan T (2003) RNA folding: models and perspectives. Curr Opin Struct Biol 13:309–316

    CAS  PubMed  Google Scholar 

  • St-Pierre P, McCluskey K, Shaw E et al (2014) Fluorescence tools to investigate riboswitch structural dynamics. Biochim Biophys Acta 1839:1005–1019

    CAS  PubMed  Google Scholar 

  • Strack RL, Disney MD, Jaffrey SR (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods 10:1219–1224

    CAS  PubMed  Google Scholar 

  • Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    CAS  PubMed  Google Scholar 

  • Suddala KC, Rinaldi AJ, Feng J et al (2013) Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure. Nucleic Acids Res 41:10462–10475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tan E, Wilson TJ, Nahas MK et al (2003) A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc Natl Acad Sci USA 100:9308–9313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Treiber DK, Rook MS, Zarrinkar PP et al (1998) Kinetic intermediates trapped by native interactions in RNA folding. Science 279:1943–1946

    CAS  PubMed  Google Scholar 

  • Tremblay R, Mulhbacher J, Blouin S et al (2009) Natural functional nucleic acids: ribozymes and riboswitches. In: Yingfu L, Lu Y (eds) Functional nucleic acids for analytical applications. Springer, New York, NY, pp 11–46

    Google Scholar 

  • Tremblay R, Lemay JF, Blouin S et al (2011) Constitutive regulatory activity of an evolutionarily excluded riboswitch variant. J Biol Chem 286:27406–27415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verma A, Halder K, Halder R et al (2008) Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J Med Chem 51:5641–5649

    CAS  PubMed  Google Scholar 

  • Vummidi BR, Alzeer J, Luedtke NW (2013) Fluorescent probes for G-quadruplex structures. ChemBioChem 14:540–558

    CAS  PubMed  Google Scholar 

  • Wallace MI, Ying JM, Balasubramanian S et al (2000) FRET fluctuation spectroscopy: exploring the conformational dynamics of a DNA hairpin loop. J Phys Chem B 104:11551–11555

    CAS  Google Scholar 

  • Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683

    CAS  PubMed  Google Scholar 

  • Wilson TJ, Nahas M, Ha T et al (2005) Folding and catalysis of the hairpin ribozyme. Biochem Soc Trans 33:461–465

    CAS  PubMed  Google Scholar 

  • Wilson TJ, Nahas M, Araki L et al (2007) RNA folding and the origins of catalytic activity in the hairpin ribozyme. Blood Cell Mol Dis 38:8–14

    CAS  Google Scholar 

  • Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. ChemBioChem 4:1024–1032

    CAS  PubMed  Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    CAS  PubMed  Google Scholar 

  • Winkler WC, Cohen-Chalamish S, Breaker RR (2002a) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci 99:15908–15913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winkler WC, Nahvi A, Breaker RR (2002b) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956

    CAS  PubMed  Google Scholar 

  • Winkler WC, Nahvi A, Sudarsan N et al (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10:701–707

    CAS  PubMed  Google Scholar 

  • Wood S, Ferré-D’Amaré AR, Rueda D (2012) Allosteric tertiary interactions pre-organize the c-di-GMP riboswitch and accelerate ligand binding. ACS Chem Biol 7:920–927

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wozniak AK, Schröder GF, Grubmüller H et al (2008) Single-molecule FRET measures bends and kinks in DNA. Proc Natl Acad Sci USA 105:18337–18342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ying L, Green JJ, Li H et al (2003) Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proc Natl Acad Sci USA 100:14629–14634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Q, Juette MF, Jockusch S et al (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43:1044–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuang X (2005) Single-molecule RNA science. Annu Rev Biophys Biomol Struct 34:399–414

    CAS  PubMed  Google Scholar 

  • Zhuang X, Bartley LE, Babcock HP et al (2000) A single-molecule study of RNA catalysis and folding. Science 288:2048–2051

    CAS  PubMed  Google Scholar 

  • Zhuang X, Kim H, Pereira MJB et al (2002) Correlating structural dynamics and function in single ribozyme molecules. Science 296:1473–1476

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank EPSRC, BBSRC, Wellcome Trust and the University of St Andrews for supporting this work, and we also wish to thank all members of JCP lab for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carlos Penedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perez-Gonzalez, D.C., Penedo, J.C. (2015). Single-Molecule Strategies for DNA and RNA Diagnostics. In: Erdmann, V., Jurga, S., Barciszewski, J. (eds) RNA and DNA Diagnostics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-17305-4_15

Download citation

Publish with us

Policies and ethics