Skip to main content
Log in

Selective solid-phase extraction of tebuconazole in biological and environmental samples using molecularly imprinted polymers

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization using tebuconazole (TBZ) as a template. Frontal chromatography and selectivity experiments were used to determine the binding capabilities and binding specificities of different MIPs. The polymer that had the highest binding selectivity and capability was used as the solid-phase extraction (SPE) sorbent for the direct extraction of TBZ from different biological and environmental samples (cabbage, pannage, shrimp, orange juice and tap water). The extraction protocol was optimized and the optimum conditions were: conditioning with 5 mL methanol:acetic acid (9:1), 5 mL methanol and 5 mL water respectively, loading with 5 mL aqueous samples, washing with 1.2 mL acetonitrile (ACN):phosphate buffer (5:5, pH3), and eluting with 3 mL methanol. The MIPs were able to selectively recognize, effectively trap and preconcentrate TBZ over a concentration range of 0.5–15 μmol/L. The intraday and interday RSDs were less than 9.7% and 8.6%, respectively. The limit of quantification was 0.1 μmol/L. Under optimum conditions, the MISPE recoveries of spiked cabbage, pannage, shrimp, orange juice and tap water were 62.3%, 75.8%, 71.6%, 89% and 93.9%, respectively. MISPE gave better HPLC separation efficiencies and higher recoveries than C18 SPE and strong cation exchange (SCX) SPE.

HPLC analysis of spiked pannage after MISPE (A) and after C18 SPE (B). HQ (1), E3 (2), p-NP (3), FTF (4), TBZ (5), PNZ (6), HXZ (7)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stehmann C, Waard de MA (1996) Crop Prot 15:39–47

    Article  CAS  Google Scholar 

  2. Sanagi MM, See HH, Ibrahim WAW, Naim AA (2004) J Chromatogr A 1059:95–101

    Article  CAS  Google Scholar 

  3. US EPA (1999) Federal Register: Rules and Regulations 64:1132–1138

    Google Scholar 

  4. Paoli MD, Tacchedo M, Damiato V, Fabbro D Bruno R (1997) J Chromatogr A 765:127–131

    Article  Google Scholar 

  5. Colume A, Cardenas S, Gallego M, Valcarcel M (2000) J Chromatogr A 882:193–203

    Article  CAS  Google Scholar 

  6. Blasco C, Pico Y, Manes J, Font G (2002) J Chromatogr A 947:227–235

    Article  CAS  Google Scholar 

  7. Blasco C, Pico Y, Font G (2002) J AOAC Int 3:704–710

    Google Scholar 

  8. Rodriguez R, Manes J, Pico Y (2003) Anal Chem 75:452–459

    Article  CAS  Google Scholar 

  9. Zhu XL, Yang J, Su QD, Cai JB, Gao Y (2005) J Chromatogr A 1092:161–169

    Article  CAS  Google Scholar 

  10. Osemwengie LI, Steinberg S (2001) J Chromatogr A 932:107–118

    Article  CAS  Google Scholar 

  11. Xu F, Liang XM, Lin BC, Su F, Schramm KW, Kettrup A (1999) Chemosphere 39:2239–2248

    Article  CAS  Google Scholar 

  12. Miyauchi T, Mori M, Ito K (2005) J Chromatogr A 1063:137–141

    Article  CAS  Google Scholar 

  13. Redondo MJ, Ruiz MJ, Boluda R, Font G (1996) J Chromatogr A 719:69–76

    Article  CAS  Google Scholar 

  14. Delaunay N, Pichon V, Hennion MC (2000) J Chromatogr B 745:15–37

    Article  CAS  Google Scholar 

  15. Rashid BA, Aherne GW, Katmeh MF, Wasowski PK, Stevenson D (1998) J Chromatogr A 797:245–250

    Article  CAS  Google Scholar 

  16. Hennion MC, Pichon V (2003) J Chromatogr A 1000:29–52

    Article  CAS  Google Scholar 

  17. Sellergren B (1994) Anal Chem 66:1578–1582

    Article  CAS  Google Scholar 

  18. Baggiani C, Trotta F, Giraudi G, Giovannoli C, Vanni A (1999) Anal Commun 36:263–269

    Article  CAS  Google Scholar 

  19. Turiel E, Martin-Esteban A, Fernandez P, Perez-Conde C, Camara C (2001) Anal Chem 73:5133–5141

    Article  CAS  Google Scholar 

  20. Mena ML, Martinez-Ruiz P, Reviejo AJ, Pingarron JM (2002) Anal Chim Acta 451:297–304

    Article  CAS  Google Scholar 

  21. Matsui J, Okada M, Tsuruoka M, Takeuchi T (1997) Anal Commun 34:85–87

    Article  CAS  Google Scholar 

  22. Zhu QZ, Degelmann P, Niessner R, Knopp D (2002) Environ Sci Technol 36:5411–5420

    Article  CAS  Google Scholar 

  23. Ye L, Cormack PAG, Mosbac K (1999) Anal Commun 36:35–38

    Article  CAS  Google Scholar 

  24. Jiang M, Zhang JH, Mei SR, Shi Y, Zou LJ, Zhu YX, Dai K, Lu B (2006) J Chromatogr A 1110:27–34

    Article  CAS  Google Scholar 

  25. Theodoridis G, Zacharis CK, Tzanavaras PD, Themelis DG, Economou A (2004) J Chromatogr A 1030:69–76

    Article  CAS  Google Scholar 

  26. Kasai K, Oda Y, Nishikata M, Ishii S (1986) J Chromatogr 376:33–42

    Article  CAS  Google Scholar 

  27. Cheong SH, McNiven S, Rachkov A, Levi R, Yano K, Karube I (1997) Macromolecules 30:1317–1322

    Article  CAS  Google Scholar 

  28. Tamayo FG, Casillas JL, Martin-Esteban A (2005) Anal Bioanal Chem 381:1234–1240

    Article  CAS  Google Scholar 

  29. (1997) Method for the determination of triadimentol residues in cereals for export (SN0644)

  30. Zhang JH, Jiang M, Zou LJ, Shi D, Mei SR, Zhu YX, Shi Y, Dai K, Lu B (2006) Anal Bioanal Chem 785:780–786

    Article  Google Scholar 

  31. Wang J, Cormack PAG, Sherrington DC, Khoshdel E (2003) Angew Chem Int Ed 42:5336–5338

    Article  CAS  Google Scholar 

  32. Tamayo FG, Casillas JL, Martin-Esteban A (2005) J Chromatogr A 1069:173–181

    Article  CAS  Google Scholar 

  33. Olof R, Lars IA, Mosbach K (1993) J Org Chem 58:7562–7564

    Article  Google Scholar 

  34. Barcelo D, Hennion MC (1995) Anal Chim Acta 318:1–41

    Article  CAS  Google Scholar 

  35. Hennion MC, Coquart V (1993) J Chromatogr 642:211–219

    Article  CAS  Google Scholar 

  36. Zander A, Findlay P, Renner T, Sellergren B (1998) Anal Chem 70:3304–3314

    Article  CAS  Google Scholar 

  37. Theodoridis G, Manesiotis P (2002) J Chromatogr A 948:163–169

    Article  CAS  Google Scholar 

  38. Andersson LI (2000) Analyst 125:1515–1517

    Article  CAS  Google Scholar 

  39. Chapuis F, Pichon V, Lanza F, Sellergren B, Hennion MC (2003) J Chromatogr A 999:23–33

    Article  CAS  Google Scholar 

  40. Karlsson JG, Andersson LI, Nicholls IA (2001) Anal Chim Acta 435:57–64

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 20307004 and NO. 20477013), and the Entry-Exit Inspection and Quarantine Bureau of PRC (NO 2005G0082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material

Fig. S1

Scanning electron micrographs of the particles prepared: a the length of the bar is 1 μm; b the length of the bar is 5 μm (DOC 210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Ml., Jiang, M., Wang, P. et al. Selective solid-phase extraction of tebuconazole in biological and environmental samples using molecularly imprinted polymers. Anal Bioanal Chem 387, 1007–1016 (2007). https://doi.org/10.1007/s00216-006-1004-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1004-2

Keywords

Navigation