Skip to main content

Advertisement

Log in

Evaluation of two proteomics technologies used to screen the membrane proteomes of wild-type Corynebacterium glutamicum and an L-lysine-producing strain

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The membrane proteomes of a wild-type Corynebacterium glutamicum and an L-lysine-producing strain were quantitatively analyzed by two complementary proteomics techniques—anion exchange chromatography AIEC/SDS-PAGE and 16BAC-PAGE/SDS-PAGE—and the results were compared. Although both techniques allow for the fast screening of differences in protein abundance, AIEC/SDS-PAGE was superior to 16BAC-PAGE/SDS-PAGE with respect to protein separation, it was more suitable for relative protein quantification, and allowed more differentially regulated proteins to be detected (the succinate dehydrogenase complex, an ABC-type cobalamin/Fe3+ siderophore transport system, the maltose binding protein, and a subunit of the cytochrome bc-aa3 supercomplex were upregulated, while a periplasmic component of an ABC-type transporter and an iron-regulated ABC-type transporter were downregulated in the producer). The results indicate the important role of tricarboxylic acid cycle enzymes as well as the adaptation of transport processes in L-lysine-producing cells. Since the only genetic differences between the wild type and the L-lysine producer occur between four central metabolic enzymes in the cytoplasm, our study illustrates the complex effects of metabolic engineering on cell physiology and the power of the new AIEC/SDS-PAGE proteomics approach to detect these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIEC:

anion exchange chromatography

ASB-14:

amidosulfobetaine-14

16BAC:

benzyldimethyl-n-hexadecylammoniumchloride

TM:

transmembrane helix

MALDI-TOF PMF:

matrix-assisted laser desorption/ionization time-of-flight peptide mass fingerprinting

References

  1. Santoni V, Molloy M, Rabilloud T (2000) Electrophoresis 21:1054–1070

    Article  CAS  Google Scholar 

  2. Washburn MP, Wolters D, Yates JR 3rd (2001) Nat Biotechnol 19:242–247

    Article  CAS  Google Scholar 

  3. Taylor SW, Fahy E, Zhang B, Glenn GM, et al. (2003) Nat Biotechnol 21:281–286

    Article  CAS  Google Scholar 

  4. Hartinger J, Stenius K, Hogemann D, Jahn R (1996) Anal Biochem 240:126–133

    Article  CAS  Google Scholar 

  5. Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A (2005) Proteomics 5:1317–1330

    Article  CAS  Google Scholar 

  6. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  7. Zahedi RP, Meisinger C, Sickmann A (2005) Proteomics 5:3581–3588

    Article  CAS  Google Scholar 

  8. Dreger M, Bengtsson L, Schoneberg T, Otto H, Hucho F (2001) Proc Natl Acad Sci USA 98:11943–11948

    Article  CAS  Google Scholar 

  9. Hunzinger C, Wozny W, Schwall GP, Poznanovic S, et al. (2006) J Proteome Res 5:625–633

    Article  CAS  Google Scholar 

  10. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  11. Schafer A, Tauch A, Jager W, Kalinowski J, et al. (1994) Gene 145:69–73

    Article  CAS  Google Scholar 

  12. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, et al. (2002) Appl Microbiol Biotechnol 58:217–223

    Article  CAS  Google Scholar 

  13. Moritz B, Striegel K, De Graaf AA, Sahm H (2000) Eur J Biochem 267:3442–3452

    Article  CAS  Google Scholar 

  14. Koffas MA, Jung GY, Stephanopoulos G (2003) Metab Eng 5:32–41

    Article  CAS  Google Scholar 

  15. Kalinowski J, Bathe B, Bartels D, Bischoff N, et al. (2003) J Biotechnol 104:5–25

    Article  CAS  Google Scholar 

  16. Ikeda M, Nakagawa S (2003) Appl Microbiol Biotechnol 62:99–109

    Article  CAS  Google Scholar 

  17. Keilhauer C, Eggeling L, Sahm H (1993) J Bacteriol 175:5595–5603

    CAS  Google Scholar 

  18. Peterson GL (1979) Anal Biochem 100:201–220

    Article  CAS  Google Scholar 

  19. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Electrophoresis 9:255–262

    Article  CAS  Google Scholar 

  20. Vrljic M, Sahm H, Eggeling L (1996) Mol Microbiol 22:815–826

    Article  CAS  Google Scholar 

  21. Gu S, Chen J, Dobos KM, Bradbury EM, et al. (2003) Mol Cell Proteomics 2:1284–1296

    Article  CAS  Google Scholar 

  22. Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, et al. (2006) Biosci Biotechnol Biochem 70:546–550

    Article  CAS  Google Scholar 

  23. Niebisch A, Bott M (2003) J Biol Chem 278:4339–4346

    Article  CAS  Google Scholar 

  24. Bendt AK, Burkovski A, Schaffer S, Bott M, et al. (2003) Proteomics 3:1637–1646

    Article  CAS  Google Scholar 

  25. Loos A, Glanemann C, Willis LB, O’Brien XM, et al. (2001) Appl Environ Microbiol 67:2310–2318

    Article  CAS  Google Scholar 

  26. Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) J Bacteriol 186:1769–1784

    Article  CAS  Google Scholar 

  27. Wittmann C, Heinzle E (2002) Appl Environ Microbiol 68:5843–5859

    Article  CAS  Google Scholar 

  28. Wendisch VF (2005) Chem Today 23(1):49–52

    CAS  Google Scholar 

  29. Koffas M, Stephanopoulos G (2005) Curr Opin Biotechnol 16:361–366

    Article  CAS  Google Scholar 

  30. Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, et al. (2003) J Proteome Res 2:413–425

    Article  CAS  Google Scholar 

  31. Bierczynska-Krzysik A, Kang SU, Silberrring J, Lubec G (2006) Neurochem Int 49:245–255

    Article  CAS  Google Scholar 

  32. Bisle B, Schmidt A, Scheibe B, Klein C, et al. (2006) Mol Cell Proteomics 5:1543–1558

    Article  CAS  Google Scholar 

  33. Wang H, Clouthier SG, Galchev V, Misek DE, et al. (2005) Mol Cell Proteomics 4:618–625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ursula Hilp for excellent technical assistance. This work was supported by grants from the Bundesministerium für Bildung und Forschung (BMBF 0312843E), the Deutsche Forschungsgemeinschaft (European Graduate College 795) and by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Poetsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schluesener, D., Rögner, M. & Poetsch, A. Evaluation of two proteomics technologies used to screen the membrane proteomes of wild-type Corynebacterium glutamicum and an L-lysine-producing strain. Anal Bioanal Chem 389, 1055–1064 (2007). https://doi.org/10.1007/s00216-006-0997-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0997-x

Keywords

Navigation