Skip to main content
Log in

Microfabrication of screen-printed nanoliter vials with embedded surface-modified electrodes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A self-contained ion-selective sensing system within a nanoliter-volume vial has been developed by integrating screen printing, laser ablation, and molecular imprinting techniques. Screen printing and laser ablation are used in tandem to fabricate nanoliter-volume vials with carbon and Ag/AgCl ring electrodes embedded in the sidewalls. Using multisweep cyclic voltammetry, the surface of the carbon electrode can be modified with a polypyrrole film. By polymerizing pyrrole in the presence of nitrate, pores complementary to the nitrate anion in size, shape, and charge distribution are formed in the resulting film. Electrochemical cells modified with this nitrate-imprinted polypyrrole film show a near-Nernstian response to nitrate, and excellent reproducibility. The integration of molecular recognition and electrochemical response in the nanoliter vials is demonstrated by the detection of as little as 0.36 ng nitrate in nanoliter-volume samples. The integration of tailored molecular recognition within nanoliter vials via established fabrication and imprinting protocols should result in a number of nanosensor devices with applications in BioMEMS and micro total analysis systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grosvenor AL, Feltus A, Conover RC, Daunert S, Anderson KW (2000) Anal Chem 72:2590–2594

    Article  CAS  Google Scholar 

  2. Ball JC, Lumpp JK, Daunert S, Bachas LG (2000) Electroanalysis 12:685–690

    Article  CAS  Google Scholar 

  3. Ball JC, Scott DL, Lumpp JK, Daunert S, Wang J, Bachas LG (2000) Anal Chem 72:497–501

    Article  CAS  Google Scholar 

  4. Moerman R, Knoll J, Apetrei C, van den Doel LR, van Dedem GWK (2005) Anal Chem 77:225–231

    Article  CAS  Google Scholar 

  5. Yasukawa T, Glidle A, Cooper JM, Matsue T (2002) Anal Chem 74:5001–5008

    Article  CAS  Google Scholar 

  6. Litborn E, Emmer Å, Roeraade J (1999) Anal Chim Acta 401:11–19

    Article  CAS  Google Scholar 

  7. Emmer Å, Roeraade J (2005) Anal Chim Acta 542:137–143

    Article  CAS  Google Scholar 

  8. Jansson M, Emmer Å, Roeraade J, Lindberg U, Hök B (1992) J Chromatogr 626:310–314

    Article  CAS  Google Scholar 

  9. Young IT, Moerman R, van den Doel LR, Iordanov V, Kroon A, Dietrich HRC, van Dedem GWK, Bossche A, Gray BL, Sarro L, Verbeek PW, van Vliet LJ (2003) J Microscopy 212:254–263

    Article  CAS  Google Scholar 

  10. Clark RA, Hietpas PB, Ewing AG (1997) Anal Chem 69:259–263

    Article  CAS  Google Scholar 

  11. Johannessen EA, Weaver JMR, Bourova L, Svoboda P, Cobbold PH, Cooper JM (2002) Anal Chem 74:2190–2197

    Article  CAS  Google Scholar 

  12. Henry CS, Fritsch I (1999) J Elecrochem Soc 146:3367–3373

    Article  CAS  Google Scholar 

  13. Henry CS, Fritsch I (1999) Anal Chem 71:550–556

    Article  CAS  Google Scholar 

  14. Vandeveer WR IV, Woodward DJ, Fritsch I (2003) Electrochim Acta 48:3341–3348

    Article  CAS  Google Scholar 

  15. Aguilar ZP, Vandeveer WR IV, Fritsch I (2002) Anal Chem 74:3321–3329

    Article  CAS  Google Scholar 

  16. Bratten CDT, Cobbold PH, Cooper JM (1997) Anal Chem 69:253–258

    Article  CAS  Google Scholar 

  17. Bratten CDT, Cobbold PH, Cooper JM (1998) Chem Commun 4:471–472

    Article  Google Scholar 

  18. Cai X, Glidle A, Cooper JM (2000) Electroanalysis 12:631–639

    Article  CAS  Google Scholar 

  19. Bratten CDT, Cobbold PH, Cooper JM (1998) Anal Chem 70:1164–1170

    Article  CAS  Google Scholar 

  20. Jager EWH, Immerstrand C, Peterson KH, Magnusson K-E, Lundström I, Inganäs O (2002) Biomed Microdevices 4:177–187

    Article  Google Scholar 

  21. Feeney R, Kounaves SP (2000) Electroanalysis 12:677–684

    Article  CAS  Google Scholar 

  22. Sandison ME, Anicet N, Glidle A, Cooper JM (2002) Anal Chem 74:5717–5725

    Article  CAS  Google Scholar 

  23. Masalles C, Borrós S, Viñas C, Teixidor F (2002) Anal Bioanal Chem 372:513–518

    Article  CAS  Google Scholar 

  24. Michalska A, Maksymiuk K (2003) Microchim Acta 143:163–175

    Article  CAS  Google Scholar 

  25. Hutchins RS, Bachas LG (1995) Anal Chem 67:1654–1660

    Article  CAS  Google Scholar 

  26. Hernández EC, Witkowski A, Daunert S, Bachas LG (1995) Microchim Acta 121:63–72

    Article  Google Scholar 

  27. Yon-Hin BFY, Smolander M, Crompton T, Lowe CR (1993) Anal Chem 65:2067–2071

    Article  CAS  Google Scholar 

  28. Shi Y, Yang Y, Kan J, Mu S, Li Y (1997) Biosens Bioelectron 12:655–659

    Article  CAS  Google Scholar 

  29. Uang Y-M, Chou T-C (2003) Biosens Bioelectron 19:141–147

    Article  CAS  Google Scholar 

  30. Adeloju SB, Moline AN (2001) Biosens Bioelectron 16:133–139

    Article  CAS  Google Scholar 

  31. Shiigi H, Kijima D, Ikenaga Y, Hori K, Fukazawa S, Nagaoka T (2005) J Electrochem Soc 152:H129–H134

    Article  CAS  Google Scholar 

  32. Liang H-J, Ling T-R, Rick JF, Chou T-C (2005) Anal Chim Acta 542:83–89

    Article  CAS  Google Scholar 

  33. Yang H-H, Zhang S-Q, Tan F, Zhuang Z-X, Wang X-R (2005) J Am Chem Soc 127:1378–1379

    Article  CAS  Google Scholar 

  34. Chen P, Fryling MA, McCreery RL (1995) Anal Chem 67:3115–3122

    Article  CAS  Google Scholar 

  35. Chen P, McCreery RL (1996) Anal Chem 68:3958–3965

    Article  CAS  Google Scholar 

  36. Farrell PC, Kinley PR, Weiss DJ, Strein TG (2003) Electroanalysis 15:813–820

    Article  CAS  Google Scholar 

  37. Strein TG, Ximba BJ, Hamad AH (1999) Electroanalysis 11:37–46

    Article  CAS  Google Scholar 

  38. Strein TG, Ewing AG (1991) Anal Chem 63:194–198

    Article  CAS  Google Scholar 

  39. Sternitzke KD, McCreery RL (1990) Anal Chem 62:1339–1344

    Article  CAS  Google Scholar 

  40. Poon M, McCreery RL (1988) Anal Chem 60:1725–1730

    Article  CAS  Google Scholar 

  41. Bowling RJ, Packard RT, McCreery RL (1989) J Am Chem Soc 111:1217–1223

    Article  CAS  Google Scholar 

  42. McDermott MT, McDermott CA, McCreery RL (1993) Anal Chem 65:937–944

    Article  CAS  Google Scholar 

  43. Ersöz A, Ball JC, Grimes CA, Bachas LG (2002) Anal Chem 74:4050–4053

    Article  CAS  Google Scholar 

  44. Bakker E, Bühlmann P, Pretsch E (1997) Chem Rev 97:3083–3132

    Article  CAS  Google Scholar 

  45. Buck RP, Lindner E (1994) Pure Appl Chem 66:2527–2536

    CAS  Google Scholar 

  46. Ersöz A, Gavalas VG, Bachas LG (2002) Anal Bioanal Chem 372:786–790

    Article  CAS  Google Scholar 

  47. Hulanicki A, Michalska A (1994) Talanta 41:323–325

    Article  CAS  Google Scholar 

  48. Hulanicki A, Michalska A, Lewenstam A (1994) Electroanalysis 6:604–605

    Article  CAS  Google Scholar 

  49. Michalska A, Lewenstam A, Ivaska A, Hulanicki A (1993) Electroanalysis 5:261–263

    Article  CAS  Google Scholar 

  50. Herrasti P, Díaz L, Ocón P, Ibáñez A, Fatas E (2004) Electrochim Acta 49:3693–3699

    Article  CAS  Google Scholar 

  51. Li CM, Sun CQ, Chen W, Pan L (2005) Surf Coat Technol 198:474–477

    Article  CAS  Google Scholar 

  52. Dong S, Sun Z, Lu Z (1988) Analyst 113:1525–1528

    Article  CAS  Google Scholar 

  53. Dong S, Che G (1991) Talanta 38:111–114

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the National Aeronautics and Space Administration, the Kentucky Research Challenge Trust Fund, and the National Science Foundation IGERT program for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas G. Bachas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenihan, J.S., Ball, J.C., Gavalas, V.G. et al. Microfabrication of screen-printed nanoliter vials with embedded surface-modified electrodes. Anal Bioanal Chem 387, 259–265 (2007). https://doi.org/10.1007/s00216-006-0893-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0893-4

Keywords

Navigation