Skip to main content

Carbon Nanotubes: Advances, Integration and Applications to Printable Electrode-Based Biosensors

  • Chapter
  • First Online:
Nanobiosensors and Nanobioanalyses

Abstract

The development of novel analytical techniques for biosensor application has been an area of intense research efforts in the past decade and, in a field where the demand for rapid and cost-effective analyses is high, the use of screen-printed electrodes as opposed to conventional macroelectrodes can effectively satisfy these demands. With advancements in nanotechnology, the use of nanomaterials in biosensors has also added another level of customizability and sensitivity. In this chapter, we described the use of carbon nanotubes in printable electrode-based biosensors for label-free detection approaches for the detection of environmental contaminants and biologically relevant substrates. A discussion of past developments and recent advancements will highlight the broad range of experimental designs suitable for biosensing applications. With continual innovation in this field, it is expected that screen-printing technology will come to the fore in biosensing technology and progress successfully to overcome fundamental challenges in the biosensor field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RN (1958) Carbon paste electrodes. Anal Chem 30(9):1576

    Article  CAS  Google Scholar 

  • Albareda-Servent M, Merkoci A, Alegret S (2000) Configurations used in the design of screen-printed enzymatic biosensors: a review. Sens Actuat B Chem 69(1):153–163

    Article  Google Scholar 

  • Baravik I, Tel-Vered R, Ovits O et al (2009) Electrical contacting of redox enzymes by means of oligoaniline-cross-linked enzyme/carbon nanotube composites. Langmuir 25(24):13978–13983

    Article  CAS  PubMed  Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes - the route toward applications. Science 297(5582):787–792

    Article  CAS  PubMed  Google Scholar 

  • Bhand S, Soundararajan S, Suguriu-Warnmark I et al (2010) Fructose-selective calorimetric biosensor in flow injection analysis. Anal Chim Acta 668(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar A, Deshmukh V, Prajapati L (2013) Carbon nanotube as a drug delivery system: a review. Int J Pharm Technol 5(2):2695–2711

    CAS  Google Scholar 

  • Bohrn U, Stutz E, Fuchs K et al (2012) Monitoring of irritant gas using a whole-cell based sensor system. Sens Actuat B Chem 175:208–217

    Article  CAS  Google Scholar 

  • Britto PF, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41(1):121–125

    Article  CAS  Google Scholar 

  • Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2001) Metal-assisted organization of shortened carbon nanotubes in monolayer and multilayer forest assemblies. J Am Chem Soc 123(38):9451–9452

    Article  CAS  PubMed  Google Scholar 

  • Chen RS, Huang WH, Tong H et al (2003) Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Anal Chem 75(22):6341–6345

    Article  CAS  PubMed  Google Scholar 

  • Chikae M, Fukuda T, Kerman K et al (2008a) Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochem Bioenerg 74(1):118–123

    Article  CAS  Google Scholar 

  • Chikae M, Fukuda T, Kerman K et al (2008b) Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelechem 74(1):118–123

    CAS  Google Scholar 

  • Chikkaveeraiah BV, Bhirde A, Malhotra R et al (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81(21):9129–9134

    Article  PubMed  Google Scholar 

  • Chikkaveeraiah BV, Soldà A, Choudhary D et al (2012) Ultrasensitive nanostructured immunosensor for stem and carcinoma cell pluripotency gatekeeper protein NANOG. Nanomedicine (Lond) 7(7):957–965

    Article  CAS  Google Scholar 

  • Clark LC (1956) Monitor and control of blood and tissue oxygen tensions. ASAIO J 2(1):41–48

    Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  PubMed  Google Scholar 

  • Davis JJ, Coles RJ, Allen H (1997) Protein electrochemistry at carbon nanotube electrodes. J Electroanal Chem 440(1–2):279–282

    CAS  Google Scholar 

  • Davis JJ, Green M, Hill H et al (1998) The immobilisation of proteins in carbon nanotubes. Inorg Chim Acta 272(1–2):261–266

    Article  CAS  Google Scholar 

  • Diao P, Liu Z, Wu B et al (2002) Chemically assembled single-wall carbon nanotubes and their electrochemistry. Chemphyschem 3(10):898–991

    Article  CAS  PubMed  Google Scholar 

  • Dock E, Ruzgas T (2003) Screen-printed electrodes modified with cellobiose dehydrogenase: amplification factor for catechol vs reversibility of ferricyanide. Electroanalysis 15(5):492–498

    Article  CAS  Google Scholar 

  • Dominguez Renedo O, Alonso-Lomillo MA, Arcos Martinez MJ (2007) Recent developments in the field of screen-printed electrodes and their related applications. Talanta 73:2002–2219

    Google Scholar 

  • Dounin V, Veloso AJ, Schulze H et al (2010) Disposable electrochemical printed gold chips for the analysis of acetylcholinesterase inhibition. Anal Chim Acta 669(1–2):63–67

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Kerman K, Nagatani N et al (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77(21):6976–6984

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhou YS, Xiong W, Mahjouri-Samani M et al (2009) Controlled growth of carbon nanotubes on electrodes under different bias polarity. Appl Phys Lett 95(14):143117

    Article  Google Scholar 

  • Girifalco LA, Hodak M, Lee RS (2006) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104–13110

    Article  Google Scholar 

  • Heister E, Brunner E, Dieckmann G et al (2013) Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl Mater Interfaces 5(6):1870–1891

    Article  CAS  PubMed  Google Scholar 

  • Ho S, Mikami Y (2011) Porous carbon layers for counter electrodes in dye-sensitized solar cells: recent advances and a new screen-printing method. Pure Appl Chem 83(11):2089–2106

    Google Scholar 

  • Hu J (2009) The evolution of commercialized glucose sensor in China. Biosens Bioelectron 24(5):1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  CAS  Google Scholar 

  • Hung VWS, Kerman K (2011) Gold electrodeposition on carbon nanotubes for the enhanced electrochemical detection of homocysteine. Electrochem Commun 13(4):328–330

    Article  CAS  Google Scholar 

  • Hung VWS, Masoom H, Kerman K (2012) Label-free electrochemical detection of Amyloid beta aggregation in the presence of iron, copper and zinc. J Electroanal Chem 681(1):89–95

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  • Islam MF, Rojas E, Bergey DM et al (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273

    Article  CAS  Google Scholar 

  • Kagan D, Campuzano S, Balasubramanian S et al (2011) Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett 11(5):2083–2087

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Willner I (2004a) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl 43(45):6042–6108

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Willner I (2004b) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chemphyschem 5(8):1084–1104

    Article  CAS  PubMed  Google Scholar 

  • Kerman K, Kraatz HB (2009) Electrochemical detection of protein tyrosine kinase-catalysed phosphorylation using gold nanoparticles. Biosens Bioelectron 24(5):1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Kerman K, Morita Y, Takamura Y et al (2003) Label-free electrochemical detection of DNA hybridization on gold electrode. Electrochem Commun 5(10):887–891

    Article  CAS  Google Scholar 

  • Kerman K, Kobayashi M, Tamiya E (2004a) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15:R1–R11

    Article  CAS  Google Scholar 

  • Kerman K, Matsubara Y, Morita Y et al (2004b) Peptide nucleic acid modified magnetic beads for intercalator based electrochemical detection of DNA hybridization. Sci Technol Adv Mater 5:351–357

    Article  CAS  Google Scholar 

  • Kerman K, Saito M, Morita Y et al (2004c) Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal Chem 76(7):1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Kerman K, Morita Y, Takamura Y et al (2005) Escherichia coli single-strand binding protein-DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor. Anal Bioanal Chem 381(6):1114–1121

    Article  CAS  PubMed  Google Scholar 

  • Kerman K, Vestergaard M, Tamiya E (2007) Label-free electrical sensing of small-molecule inhibition on tyrosine phosphorylation. Anal Chem 79(17):6881–6885

    Article  CAS  PubMed  Google Scholar 

  • Kerman K, Song H, Duncan JS et al (2008) Peptide biosensors for the electrochemical measurement of protein kinase activity. Anal Chem 80(24):9395–9401

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Park S (2014) Liquid crystal-based proton sensitive glucose biosensor. Anal Chem 86(3):1493–1501

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Choi B, Seo J et al (2013) Mussel adhesive protein based whole cell array biosensors for detection of organophosphorus compounds. Biosens Bioelectron 41(1):199–204

    Article  CAS  PubMed  Google Scholar 

  • Kocabas C, Hur SH, Gaur A et al (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11):1110–1116

    Article  CAS  PubMed  Google Scholar 

  • Lahiff E, Lynam C, Gilmartin N et al (2010) The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem 398(4):1575–1589

    Article  CAS  PubMed  Google Scholar 

  • Laschi S, Palchetti I, Mascini M (2006) Gold-based screen-printed sensor for detection of trace lead. Sens Actuat A 114(1):460–465

    Article  CAS  Google Scholar 

  • Li M, Li YT, Li DW et al (2012a) Recent developments and applications of screen-printed electrodes in environmental assays—a review. Anal Chim Acta 734:31–44

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang L, Li M et al (2012b) A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs-doped screen-printed electrode. Chem Cent J 6(1):103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Rinzler AG, Dai H et al (1998) Fullerene pipes. Science 280(5367):1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Shen Z, Zhu T et al (2000) Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir 16(8):3569–3573

    Article  CAS  Google Scholar 

  • Liu G, Lin Y, Tu Y et al (2005) Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. Analyst 130(7):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Luong J, Male K, Glennon J (2008) Biosensor technology: technology push versus market pull. Biotech Adv 26(5):493–500

    Article  Google Scholar 

  • Malhotra R, Patel V, Chikkaveeraiah BV et al (2012) Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. Anal Chem 84(14):6249–6255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mikkelsen SR (1993) Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal Chem 65(17):2317–2323

    Article  PubMed  Google Scholar 

  • Millan KM, Saraullo S, Mikkelsen SR (1994) Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem 66(18):2943–2948

    Article  CAS  PubMed  Google Scholar 

  • Minunni M, Tombelli S, Scielzi R et al (2003) Detection of β-thalassemia by a DNA piezoelectric biosensor coupled with polymerase chain reaction. Anal Chim Acta 481(1):55–64

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC et al (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  • Miscoria SA, Barrera GD, Rivas GA (2005) Enzymatic biosensor based on carbon paste electrodes modified with gold nanoparticles and polyphenol oxidase. Electroanalysis 17(17):1578–1582

    Article  CAS  Google Scholar 

  • Mizutani F, Sato Y, Yabuki S et al (1999) Enzyme electrodes based on self-assembled monolayers of thiol compounds on gold. Electrochim Acta 44(21):3833–3838

    Article  CAS  Google Scholar 

  • Morf W, De Rooij NF (1997) Performance of amperometric sensors based on multiple microelectrode arrays. Sens Actuat B 44(1–3):538–541

    Article  CAS  Google Scholar 

  • Okuno J, Maehashi K, Kerman K et al (2007a) Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron 22(9–10):2377–2381

    Article  CAS  PubMed  Google Scholar 

  • Okuno J, Maehashi K, Matsumoto K et al (2007b) Single-walled carbon nanotube-arrayed microelectrode chip for electrochemical analysis. Electrochem Commun 9(1):13–18

    Article  CAS  Google Scholar 

  • Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559):1503–1506

    CAS  PubMed  Google Scholar 

  • Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556(1):46–57

    Article  CAS  PubMed  Google Scholar 

  • Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed 43(16):2113–2117

    Article  CAS  Google Scholar 

  • Pedano ML, Rivas GA (2005) Immobilization of DNA at glassy carbon electrodes: a critical study of adsorbed layer. Sensors 5(6):424–447

    Article  PubMed Central  CAS  Google Scholar 

  • Retna R, Ohsaka T (2002) Analytical applications of functionalized self-assembled monolayers on gold electrode: voltammetric sensing of DOPAC at the physiological level. Electroanalysis 14(10):679–684

    Article  Google Scholar 

  • Rivas GA, Rubianes MD, Rodríguez MC et al (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74(3):291–307

    Article  CAS  PubMed  Google Scholar 

  • Roberts G (2006) History’s influence on screen printing’s future. Screen Print 96(2):22–25

    Google Scholar 

  • Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochem Commun 5(8):689–694

    Article  CAS  Google Scholar 

  • Rubianes MD, Rivas GA (2004) Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanalysis 17(1):73–78

    Article  Google Scholar 

  • Rusling JF (2012) Nanomaterials-based electrochemical immunosensors for proteins. Chem Record 12(1):164–176

    Article  CAS  Google Scholar 

  • Sanchez S, Pumera M, Cabruja E et al (2007) Carbon nanotubes/polysulfone composite screen-printed electrochemical enzyme sensor. Analyst 132:142–147

    Article  CAS  PubMed  Google Scholar 

  • Sardesai NP, Barron JC, Rusling JF (2011) Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem 83(17):6698–6703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sassolas A, Blum L, Leca-Bouvier B (2012) Immobilization strategies to develop enzymatic biosensors. Biotech Adv 30(3):489–511

    Article  CAS  Google Scholar 

  • Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25

    Article  CAS  PubMed  Google Scholar 

  • Tombelli S, Mascini M, Scherm B et al (2009) DNA biosensors for the detection of a aflatoxin producing aspergillus flavus and A. Parasiticus. Montash Chem 140(8):901–907

    Article  CAS  Google Scholar 

  • Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214(5092):986–988

    Article  CAS  PubMed  Google Scholar 

  • Valentini F, Carbone M, Palleshi G (2013) Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Anal Bioanal Chem 405(2):451–465

    Article  CAS  PubMed  Google Scholar 

  • Venkatanarayanan A, Crowley K, Lestini E et al (2012) High sensitivity carbon nanotube based electrochemiluminescence sensor array. Biosens Bioelectron 31(1):233–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vestergaard M, Kerman K, Tamiya E (2007) An overview of label-free electrochemical protein sensors. Sensors 7(12):3442–3458

    Article  PubMed Central  CAS  Google Scholar 

  • Wandemur G, Rodrigues D, Allil R et al (2014) Plastic optical fiber-based biosensor platform for rapid cell detection. Biosens Bioelectron 54:661–666

    Article  Google Scholar 

  • Wang J, Kawde AN (2002) Amplified label-free electrical detection of DNA hybridization. Analyst 127(3):383–386

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Musameh M (2004) Carbon nanotube screen-printed electrochemical sensors. Analyst 129:1–2

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tian B (1992) Screen-printed stripping electrodes for decentralized testing of trace lead. Anal Chem 64:1706–1709

    Article  CAS  Google Scholar 

  • Wang J, Kawde AN, Musameh M (2003a) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128(7):912–916

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Musameh M, Lin J (2003b) Solubilization of carbon nanotubes by Nafion: towards the preparation of amperometric biosensors. J Am Chem Soc 125(9):2408–2409

    Article  CAS  PubMed  Google Scholar 

  • Washe A, Lozano-Sanchez P, Bejarano-Nosas D (2013) Facile and versatile approaches to enhancing electrochemical performance of screen printed electrodes. Electrochim Acta 91:166–172

    Article  CAS  Google Scholar 

  • Willner I, Heleg-Shabtai V, Blonder R et al (1996) Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J Am Chem Soc 118(42):10321–10322

    Article  CAS  Google Scholar 

  • Yan YM, Yehezkeli O, Willner I (2007) Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications. Chemistry 13(36):10168–10175

    Article  CAS  PubMed  Google Scholar 

  • Yan YM, Baravik I, Yehezkeli O et al (2008) Integrated electrically contacted glucose oxidase/carbon nanotube electrodes for the bioelectrocatalyzed detection of glucose. J Phys Chem C 112(46):17883–17888

    Article  CAS  Google Scholar 

  • Yao Y, Shiu KK (2007) Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors. Anal Bioanal Chem 387(1):303–309

    Article  CAS  PubMed  Google Scholar 

  • Zayats M, Katz E, Willner I (2002) Electrical contacting of flavoenzymes and NAD(P)+-dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au-electrodes. J Am Chem Soc 124(49):14724–14735

    Article  CAS  PubMed  Google Scholar 

  • Zen J, Kumar A, Tsai D (2003) Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15(13):1073–1087

    Article  CAS  Google Scholar 

  • Zhang Y, Tadigadapa S (2004) Calorimetric biosensors with integrated microfluidic channels. Biosens Bioelectron 19(12):1733–1743

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kagan Kerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hung, V.W.S., Kerman, K. (2015). Carbon Nanotubes: Advances, Integration and Applications to Printable Electrode-Based Biosensors. In: Vestergaard, M., Kerman, K., Hsing, IM., Tamiya, E. (eds) Nanobiosensors and Nanobioanalyses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55190-4_13

Download citation

Publish with us

Policies and ethics