Skip to main content

FTIR Analysis of Proteins and Protein–Membrane Interactions

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2003))

Abstract

Fourier transform infrared (FTIR) spectroscopy has become one of the major techniques of structural characterization of proteins, peptides, and protein–membrane interactions. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or intermolecular interactions. The sensitivity of vibrational frequencies to atomic masses has led to development of “isotope-edited” FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as 13C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein–nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein–membrane interactions, mechanisms of interfacial enzymes, the structural features of membrane pore forming proteins and peptides, and much more. The purpose of this chapter was to provide a practical guide to analyze protein structure and protein–membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv Protein Chem 38:181–364

    CAS  PubMed  Google Scholar 

  2. Stuart B (1997) Biological applications of infrared spectroscopy. John Wiley & Sons, Chichester

    Google Scholar 

  3. Brauner JW, Dugan C, Mendelsohn R (2000) 13C isotope labeling of hydrophobic peptides. Origin of the anomalous intensity distribution in the infrared amide I spectral region of β-sheet structures. J Am Chem Soc 122:677–683

    CAS  Google Scholar 

  4. Dwivedi AM, Krimm S (1984) Vibrational analysis of peptides, polypeptides, and proteins. XVIII. Conformational sensitivity of the alpha-helix spectrum: alpha I- and alpha II-poly(L-alanine). Biopolymers 23:923–943

    CAS  PubMed  Google Scholar 

  5. Némethy G, Phillips DC, Leach SJ, Scheraga HA (1967) A second right-handed helical structure with the parameters of the Pauling-Corey α-helix. Nature 214:363–365

    PubMed  Google Scholar 

  6. Heimburg T, Schuenemann J, Weber K, Geisler N (1996) Specific recognition of coiled coils by infrared spectroscopy: analysis of the three structural domains of type III intermediate filament proteins. Biochemistry 35:1375–1382

    CAS  PubMed  Google Scholar 

  7. Reisdorf WC, Krimm S (1996) Infrared amide I′ band of the coiled coil. Biochemistry 35:1383–1386

    CAS  PubMed  Google Scholar 

  8. Kennedy DF, Crisma M, Toniolo C, Chapman D (1991) Studies of peptides forming 310- and α-helices and beta-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy. Biochemistry 30:6541–6548

    CAS  PubMed  Google Scholar 

  9. Martinez G, Millhauser G (1995) FTIR spectroscopy of alanine-based peptides: assignment of the amide I′ modes for random coil and helix. J Struct Biol 114:23–27

    CAS  PubMed  Google Scholar 

  10. Miick SM, Martinez GV, Fiori WR, Todd AP, Millhauser GL (1992) Short alanine-based peptides may form 310-helices and not α-helices in aqueous solution. Nature 359:653–655

    CAS  PubMed  Google Scholar 

  11. Naik VM, Krimm S (1986) Vibrational analysis of the structure of gramicidin A. I. Normal mode analysis. Biophys J 49:1131–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Naik VM, Krimm S (1986) Vibrational analysis of the structure of gramicidin A. II. Vibrational spectra. Biophys J 49:1147–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120

    CAS  Google Scholar 

  14. Papanikolopoulou K, Mills-Henry I, Thol SL, Wang Y, Gross AA, Kirschner DA, Decatur SM, King J (2008) Formation of amyloid fibrils in vitro by human γD-crystallin and its isolated domains. Mol Vis 14:81–89

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Itkin A, Dupres V, Dufrêne YF, Bechinger B, Ruysschaert JM, Raussens V (2011) Calcium ions promote formation of amyloid β-peptide (1–40) oligomers causally implicated in neuronal toxicity of Alzheimer’s disease. PLoS One 6:e18250

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Karjalainen EL, Ravi HK, Barth A (2011) Simulation of the amide I absorption of stacked β-sheets. J Phys Chem B 115:749–757

    CAS  PubMed  Google Scholar 

  17. Pauling L, Corey RB (1951) The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci U S A 37:251–256

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Armen RS, DeMarco ML, Alonso DO, Daggett V (2004) Pauling and Corey’s α-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc Natl Acad Sci U S A 101:11622–11627

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Daggett V (2006) Alpha-sheet: The toxic conformer in amyloid diseases? Acc Chem Res 39:594–602

    CAS  PubMed  Google Scholar 

  20. Wu H, Canfield A, Adhikari J, Huo S (2010) Quantum mechanical studies on model α-pleated sheets. J Comput Chem 31:1216–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Venyaminov SY, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in α-, β-, and random coil conformations. Biopolymers 30:1259–1271

    CAS  PubMed  Google Scholar 

  22. Vedantham G, Sparks HG, Sane SU, Tzannis S, Przybycien TM (2000) A holistic approach for protein secondary structure estimation from infrared spectra in H2O solutions. Anal Biochem 285:33–49

    CAS  PubMed  Google Scholar 

  23. Hsu SL, Moore WH, Krimm S (1976) Vibrational spectrum of the unordered polypeptide chain: a Raman study of feather keratin. Biopolymers 15:1513–1528

    CAS  PubMed  Google Scholar 

  24. Barnett SM, Edwards CM, Butler IS, Levin IW (1997) Pressure-induced transmembrane αII- to αI-helical conversion in bacteriorhodopsin: an infrared spectroscopic study. J Phys Chem B 101:9421–9424

    CAS  Google Scholar 

  25. Venyaminov SY, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30:1243–1257

    CAS  PubMed  Google Scholar 

  26. Chirgadze YN, Fedorov OV, Trushina NP (1975) Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers 14:679–694

    CAS  PubMed  Google Scholar 

  27. Tamm LK, Tatulian SA (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys 30:365–429

    CAS  PubMed  Google Scholar 

  28. Fringeli UP (1993) In situ infrared attenuated total reflection membrane spectroscopy. In: Mirabella FM Jr (ed) Internal reflection spectroscopy. Theory and applications. Marcel Dekker, Inc., New York, pp 255–324

    Google Scholar 

  29. Fringeli UP, Günthard HH (1981) Infrared membrane spectroscopy. In: Grell E (ed) Membrane spectroscopy. Springer-Verlag, Berlin, pp 270–332

    Google Scholar 

  30. Venyaminov SY, Prendergast FG (1997) Water (H2O and D2O) molar absorptivity in the 1000–4000 cm−1 range and quantitative infrared spectroscopy of aqueous solutions. Anal Biochem 248:234–245

    CAS  PubMed  Google Scholar 

  31. Arrondo JLR, Goñi FM (1993) Infrared spectroscopic studies of lipid-protein interactions in membranes. In: Watts A (ed) Protein-lipid interactions. Elsevier Science Publishers B.V., Amsterdam, pp 321–349

    Google Scholar 

  32. Tatulian SA (2003) Attenuated total reflection Fourier transform infrared spectroscopy: a method of choice for studying membrane proteins and lipids. Biochemistry 42:11898–11907

    CAS  PubMed  Google Scholar 

  33. Tatulian SA (2001) Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys J 80:789–800

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tatulian SA, Cortes DM, Perozo E (1998) Structural dynamics of the Streptomyces lividans K+ channel (SKC1): secondary structure characterization from FTIR spectroscopy. FEBS Lett 423:205–212

    CAS  PubMed  Google Scholar 

  35. Tatulian SA, Tamm LK (2000) Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry 39:496–507

    CAS  PubMed  Google Scholar 

  36. Tatulian SA (2003) Structural effects of covalent inhibition of phospholipase A2 suggest allosteric coupling between membrane binding and catalytic sites. Biophys J 84:1773–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tatulian SA, Biltonen RL, Tamm LK (1997) Structural changes in a secretory phospholipase A2 induced by membrane binding: a clue to interfacial activation? J Mol Biol 268:809–815

    CAS  PubMed  Google Scholar 

  38. Pande AH, Moe D, Nemec KN, Qin S, Tan S, Tatulian SA (2004) Modulation of human 5-lipoxygenase activity by membrane lipids. Biochemistry 43:14653–14666

    CAS  PubMed  Google Scholar 

  39. Tatulian SA, Qin S, Pande AH, He X (2005) Positioning membrane proteins by novel protein engineering and biophysical approaches. J Mol Biol 351:939–947

    CAS  PubMed  Google Scholar 

  40. Glasoe PK, Long FA (1960) Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem 64:188–190

    CAS  Google Scholar 

  41. Makhatadze GI, Clore GM, Gronenborn AM (1995) Solvent isotope effect and protein stability. Nat Struct Biol 2:852–855

    CAS  PubMed  Google Scholar 

  42. Nemec KN, Pande AH, Qin S, Bieber Urbauer RJ, Tan S, Moe D, Tatulian SA (2006) Structural and functional effects of tryptophans inserted into the membrane-binding and substrate-binding sites of human group IIA phospholipase A2. Biochemistry 45:12448–12460

    CAS  PubMed  Google Scholar 

  43. Marley J, Lu M, Bracken C (2001) A method for efficient isotope labeling of recombinant proteins. J Biomol NMR 20:71–75

    CAS  PubMed  Google Scholar 

  44. Hill JM (2008) NMR screening for rapid protein characterization in structural proteomics. Methods Mol Biol 426:437–446

    CAS  PubMed  Google Scholar 

  45. Kandori H, Nakamura H, Yamazaki Y, Mogi T (2005) Redox-induced protein structural changes in cytochrome bo revealed by Fourier transform infrared spectroscopy and [13C]Tyr labeling. J Biol Chem 280:32821–32826

    CAS  PubMed  Google Scholar 

  46. Cheong JJ, Hwang I, Rhee S, Moon TW, Choi YD, Kwon HB (2007) Complementation of an E. coli cysteine auxotrophic mutant for the structural modification study of 3′(2′),5′-bisphosphate nucleotidase. Biotechnol Lett 29:913–918

    CAS  PubMed  Google Scholar 

  47. Strømgaard A, Jensen AA, Strømgaard K (2004) Site-specific incorporation of unnatural amino acids into proteins. Chembiochem 5:909–916

    PubMed  Google Scholar 

  48. Hendrickson TL, de Crécy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147–176

    CAS  PubMed  Google Scholar 

  49. Xie J, Schultz PG (2005) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9:548–554

    CAS  PubMed  Google Scholar 

  50. Seyedsayamdost MR, Stubbe J (2009) Replacement of Y730 and Y731 in the α2 subunit of Escherichia coli ribonucleotide reductase with 3-aminotyrosine using an evolved suppressor tRNA/tRNA-synthetase pair. Methods Enzymol 462:45–76

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    CAS  PubMed  Google Scholar 

  52. Anderson RD 3rd, Zhou J, Hecht SM (2002) Fluorescence resonance energy transfer between unnatural amino acids in a structurally modified dihydrofolate reductase. J Am Chem Soc 124:9674–9675

    CAS  PubMed  Google Scholar 

  53. Sisido M, Ninomiya K, Ohtsuki T, Hohsaka T (2005) Four-base codon/anticodon strategy and non-enzymatic aminoacylation for protein engineering with non-natural amino acids. Methods 36:270–278

    CAS  PubMed  Google Scholar 

  54. Qin S, Pande AH, Nemec KN, He X, Tatulian SA (2005) Evidence for the regulatory role of the N-terminal helix of secretory phospholipase A2 from studies on native and chimeric proteins. J Biol Chem 280:36773–36783

    CAS  PubMed  Google Scholar 

  55. Venyaminov SY, Hedstrom JF, Prendergast FG (2001) Analysis of the segmental stability of helical peptides by isotope-edited infrared spectroscopy. Proteins 45:81–89

    CAS  PubMed  Google Scholar 

  56. Huang R, Kubelka J, Barber-Armstrong W, Silva RA, Decatur SM, Keiderling TA (2004) Nature of vibrational coupling in helical peptides: an isotopic labeling study. J Am Chem Soc 126:2346–2354

    CAS  PubMed  Google Scholar 

  57. Petty SA, Decatur SM (2005) Intersheet rearrangement of polypeptides during nucleation of β-sheet aggregates. Proc Natl Acad Sci U S A 102:14272–14277

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldblatt G, Matos JO, Gornto J, Tatulian SA (2015) Isotope-edited FTIR reveals distinct aggregation and structural behaviors of unmodified and pyroglutamylated amyloid β peptides. Phys Chem Chem Phys 17:32149–32160

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramajo AP, Petty SA, Starzyk A, Decatur SM, Volk M (2005) The α-helix folds more rapidly at the C-terminus than at the N-terminus. J Am Chem Soc 127:13784–13785

    CAS  Google Scholar 

  60. Lewis RN, McElhaney RN (2009) The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim Biophys Acta 1788:2069–2079

    CAS  PubMed  Google Scholar 

  61. Qin S, Pande AH, Nemec KN, Tatulian SA (2004) The N-terminal α-helix of pancreatic phospholipase A2 determines productive-mode orientation of the enzyme at the membrane surface. J Mol Biol 344:71–89

    CAS  PubMed  Google Scholar 

  62. Pande AH, Qin S, Tatulian SA (2005) Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys J 88:4084–4094

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Renthal R (2006) An unfolding story of helical transmembrane proteins. Biochemistry 45:14559–14566

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sanders CR, Sönnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:S24–S40

    CAS  PubMed  Google Scholar 

  65. Vinogradova O, Sönnichsen F, Sanders CR 2nd (1998) On choosing a detergent for solution NMR studies of membrane proteins. J Biomol NMR 11:381–386

    CAS  PubMed  Google Scholar 

  66. Garg P, Nemec KN, Khaled AR, Tatulian SA (2013) Transmembrane pore formation by the carboxyl terminus of Bax protein. Biochim Biophys Acta 1828:732–742

    CAS  PubMed  Google Scholar 

  67. Tatulian SA, Hinterdorfer P, Baber G, Tamm LK (1995) Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy. EMBO J 14:5514–5523

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tatulian SA, Chen B, Li J, Negash S, Middaugh CR, Bigelow DJ, Squier TC (2002) The inhibitory action of phospholamban involves stabilization of α-helices within the Ca2+-ATPase. Biochemistry 41:741–751

    CAS  PubMed  Google Scholar 

  69. Axelsen PH, Citra MJ (1996) Orientational order determination by internal reflection infrared spectroscopy. Prog Biophys Mol Biol 66:227–253

    CAS  PubMed  Google Scholar 

  70. Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta 1422:105–185

    CAS  PubMed  Google Scholar 

  71. Silvestro L, Axelsen PH (2000) Membrane-induced folding of cecropin A. Biophys J 79:1465–1477

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Citra MJ, Axelsen PH (1996) Determination of molecular order in supported lipid membranes by internal reflection Fourier transform infrared spectroscopy. Biophys J 71:1796–1805

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Silvestro L, Axelsen PH (1999) Fourier transform infrared linked analysis of conformational changes in annexin V upon membrane binding. Biochemistry 38:113–121

    CAS  PubMed  Google Scholar 

  74. Glassford SE, Byrne B, Kazarian SG (2013) Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim Biophys Acta 1834:2849–2858

    CAS  PubMed  Google Scholar 

  75. Shai Y (2013) ATR-FTIR studies in pore forming and membrane induced fusion peptides. Biochim Biophys Acta 1828:2306–2313

    CAS  PubMed  Google Scholar 

  76. Li JJ, Yip CM (2013) Super-resolved FT-IR spectroscopy: strategies, challenges, and opportunities for membrane biophysics. Biochim Biophys Acta 1828:2272–2282

    CAS  PubMed  Google Scholar 

  77. Manor J, Arkin IT (2013) Gaining insight into membrane protein structure using isotope-edited FTIR. Biochim Biophys Acta 1828:2256–2264

    CAS  PubMed  Google Scholar 

  78. Andrew Chan KL, Kazarian SG (2016) Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem Soc Rev 45:1850–1864

    CAS  PubMed  Google Scholar 

  79. Vigano C, Goormaghtigh E, Ruysschaert JM (2003) Detection of structural and functional asymmetries in P-glycoprotein by combining mutagenesis and H/D exchange measurements. Chem Phys Lipids 122:121–135

    CAS  PubMed  Google Scholar 

  80. Beevers AJ, Kukol A (2006) The transmembrane domain of the oncogenic mutant ErbB-2 receptor: a structure obtained from site-specific infrared dichroism and molecular dynamics. J Mol Biol 361:945–953

    CAS  PubMed  Google Scholar 

  81. Tatulian SA, Garg G, Nemec KN, Chen B, Khaled AR (2012) Molecular basis for membrane pore formation by Bax protein carboxyl terminus. Biochemistry 51:9406–9419

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Marsh D, Müller M, Schmitt F-J (2000) Orientation of the infrared transition moments for an α-helix. Biophys J 78:2499–2510

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Marsh D, Páli T (2001) Infrared dichroism from the X-ray structure of bacteriorhodopsin. Biophys J 80:305–312

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Páli T, Marsh D (2001) Tilt, twist, and coiling in β-barrel membrane proteins: relation to infrared dichroism. Biophys J 80:2789–2797

    PubMed  PubMed Central  Google Scholar 

  85. Harrick NJ (1987) Internal reflection spectroscopy. Harrick Scientific Corporation, Ossining, NY

    Google Scholar 

  86. Marsh D (2000) Infrared dichroism of twisted β-sheet barrels. The structure of E. coli outer membrane proteins. J Mol Biol 297:803–808

    CAS  PubMed  Google Scholar 

  87. Marsh D (1999) Quantitation of secondary structure in ATR infrared spectroscopy. Biophys J 77:2630–2637

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Arkin IT (2006) Isotope-edited IR spectroscopy for the study of membrane proteins. Curr Opin Chem Biol 10:394–401

    CAS  PubMed  Google Scholar 

  89. Decatur SM (2006) Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. Acc Chem Res 39:169–175

    CAS  PubMed  Google Scholar 

  90. Flach CR, Cai P, Dieudonné D, Brauner JW, Keough KM, Stewart J, Mendelsohn R (2003) Location of structural transitions in an isotopically labeled lung surfactant SP-B peptide by IRRAS. Biophys J 85:340–349

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Paul C, Wang J, Wimley WC, Hochstrasser RM, Axelsen PH (2004) Vibrational coupling, isotopic editing, and β-sheet structure in a membrane-bound polypeptide. J Am Chem Soc 126:5843–5850

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tatulian SA (2010) Structural analysis of proteins by isotope-edited FTIR spectroscopy. Spectroscopy 24:37–43

    CAS  Google Scholar 

  93. Barber-Armstrong W, Donaldson T, Wijesooriya H, Silva RA, Decatur SM (2004) Empirical relationships between isotope-edited IR spectra and helix geometry in model peptides. J Am Chem Soc 126:2339–2345

    CAS  PubMed  Google Scholar 

  94. Ludlam CF, Arkin IT, Liu XM, Rothman MS, Rath P, Aimoto S, Smith SO, Engelman DM, Rothschild KJ (1996) Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Biophys J 70:1728–1736

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Arkin IT, MacKenzie KR, Brünger AT (1997) Site-directed dichroism as a method for obtaining rotational and orientational constraints for oriented polymers. J Am Chem Soc 119:8973–8980

    CAS  Google Scholar 

  96. Marsh D (2004) Infrared dichroism of isotope-edited α-helices and β-sheets. J Mol Biol 338:353–367

    CAS  PubMed  Google Scholar 

  97. Torres J, Adams PD, Arkin IT (2000) Use of a new label, 13C=18O, in the determination of a structural model of phospholamban in a lipid bilayer. Spatial restraints resolve the ambiguity arising from interpretations of mutagenesis data. J Mol Biol 300:677–685

    CAS  PubMed  Google Scholar 

  98. Torres J, Kukol A, Goodman JM, Arkin IT (2001) Site-specific examination of secondary structure and orientation determination in membrane proteins: the peptidic 13C=18O group as a novel infrared probe. Biopolymers 59:396–401

    CAS  PubMed  Google Scholar 

  99. Kukol A, Torres J, Arkin IT (2002) A structure for the trimeric MHC class II-associated invariant chain transmembrane domain. J Mol Biol 320:1109–1117

    CAS  PubMed  Google Scholar 

  100. Brewer SH, Song B, Raleigh DP, Dyer RB (2007) Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy. Biochemistry 46:3279–3285

    CAS  PubMed  Google Scholar 

  101. Amunson KE, Ackels L, Kubelka J (2008) Site-specific unfolding thermodynamics of a helix-turn-helix protein. J Am Chem Soc 130:8146–8147

    CAS  PubMed  Google Scholar 

  102. Londergan CH, Wang J, Axelsen PH, Hochstrasser RM (2006) Two-dimensional infrared spectroscopy displays signatures of structural ordering in peptide aggregates. Biophys J 90:4672–4685

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim YS, Liu L, Axelsen PH, Hochstrasser RM (2008) Two-dimensional infrared spectra of isotopically diluted amyloid fibrils from Abeta40. Proc Natl Acad Sci U S A 105:7720–7725

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim YS, Liu L, Axelsen PH, Hochstrasser RM (2009) 2D IR provides evidence for mobile water molecules in beta-amyloid fibrils. Proc Natl Acad Sci U S A 106:17751–17756

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Shim SH, Gupta R, Ling YL, Strasfeld DB, Raleigh DP, Zanni MT (2009) Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Proc Natl Acad Sci U S A 106:6614–6619

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zanni MT, Hochstrasser RM (2001) Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures. Curr Opin Struct Biol 11:516–522

    CAS  PubMed  Google Scholar 

  107. Ganim Z, Chung HS, Smith AW, Deflores LP, Jones KC, Tokmakoff A (2008) Amide I two-dimensional infrared spectroscopy of proteins. Acc Chem Res 41:432–441

    CAS  PubMed  Google Scholar 

  108. Haris PI, Robillard GT, van Dijk AA, Chapman D (1992) Potential of 13C and 15N labeling for studying protein-protein interactions using Fourier transform infrared spectroscopy. Biochemistry 31:6279–6284

    CAS  PubMed  Google Scholar 

  109. Zhang M, Fabian H, Mantsch HH, Vogel HJ (1994) Isotope-edited Fourier transform infrared spectroscopy studies of calmodulin’s interaction with its target peptides. Biochemistry 33:10883–10888

    CAS  PubMed  Google Scholar 

  110. Das KP, Choo-Smith LP, Petrash JM, Surewicz WK (1999) Insight into the secondary structure of non-native proteins bound to a molecular chaperone α-crystallin. An isotope-edited infrared spectroscopic study. J Biol Chem 274:33209–33212

    CAS  PubMed  Google Scholar 

  111. Haris PI (2010) Can infrared spectroscopy provide information on protein-protein interactions? Biochem Soc Trans 38:940–946

    CAS  PubMed  Google Scholar 

  112. Haris PI (2013) Probing protein–protein interaction in biomembranes using Fourier transform infrared spectroscopy. Biochim Biophys Acta 1828:2265–2271

    CAS  PubMed  Google Scholar 

  113. Tam JP, Yu Q, Miao Z (1999) Orthogonal ligation strategies for peptide and protein. Biopolymers 51:311–332

    CAS  PubMed  Google Scholar 

  114. Camarero JA, Muir TW (2001) Native chemical ligation of polypeptides. Curr Protoc Protein Sci. Chapter 18:Unit 18.4

    Google Scholar 

  115. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438

    CAS  PubMed  Google Scholar 

  116. Muir TW (2008) Studying protein structure and function using semisynthesis. Biopolymers 90:743–750

    CAS  PubMed  Google Scholar 

  117. Tatulian SA (2008) Determination of helix orientations in proteins. Comput Biol Chem 32:370–374

    CAS  PubMed  Google Scholar 

  118. Blume A, Hübner W, Messner G (1988) Fourier transform infrared spectroscopy of 13C=O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry 27:8239–8249

    CAS  PubMed  Google Scholar 

  119. Hübner W, Mantsch HH, Paltauf F, Hauser H (1994) Conformation of phosphatidylserine in bilayers as studied by Fourier transform infrared spectroscopy. Biochemistry 33:320–326

    PubMed  Google Scholar 

  120. Lewis RN, McElhaney RN (1993) Studies of mixed-chain diacyl phosphatidylcholines with highly asymmetric acyl chains: a Fourier transform infrared spectroscopic study of interfacial hydration and hydrocarbon chain packing in the mixed interdigitated gel phase. Biophys J 65:1866–1877

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lewis RN, McElhaney RN, Pohle W, Mantsch HH (1994) Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys J 67:2367–2375

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Dibble AR, Hinderliter AK, Sando JJ, Biltonen RL (1996) Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Biophys J 71:1877–1890

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Moore DJ, Gioioso S, Sills RH, Mendelsohn R (1999) Some relationships between membrane phospholipid domains, conformational order, and cell shape in intact human erythrocytes. Biochim Biophys Acta 1415:342–348

    CAS  PubMed  Google Scholar 

  124. Binder H, Gawrisch K (2001) Dehydration induces lateral expansion of polyunsaturated 18:0–22:6 phosphatidylcholine in a new lamellar phase. Biophys J 81:969–982

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mimeault M, Bonenfant D (2002) FTIR spectroscopic analyses of the temperature and pH influences on stratum corneum lipid phase behaviors and interactions. Talanta 56:395–405

    CAS  PubMed  Google Scholar 

  126. Fidorra M, Heimburg T, Seeger HM (2009) Melting of individual lipid components in binary lipid mixtures studied by FTIR spectroscopy, DSC and Monte Carlo simulations. Biochim Biophys Acta 1788:600–607

    CAS  PubMed  Google Scholar 

  127. Gorcea M, Hadgraft J, Moore DJ, Lane ME (2012) Fourier transform infrared spectroscopy studies of lipid domain formation in normal and ceramide deficient stratum corneum lipid models. Int J Pharm 435:63–68

    CAS  PubMed  Google Scholar 

  128. Muir TW, Abelson JN (eds) (2009) Non-natural amino acids. Elsevier/Academic Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo

    Google Scholar 

  129. Jackson M, Haris PI, Chapman D (1989) Conformational transitions in poly(L-lysine): studies using Fourier transform infrared spectroscopy. Biochim Biophys Acta 998:75–79

    CAS  Google Scholar 

  130. de Jongh HH, Goormaghtigh E, Ruysschaert JM (1996) The different molar absorptivities of the secondary structure types in the amide I region: an attenuated total reflection infrared study on globular proteins. Anal Biochem 242:95–103

    PubMed  Google Scholar 

Download references

Acknowledgments

Experimental data presented in this chapter have been obtained and published elsewhere by Kathleen N. Nemec, Shan Qin, Abhay H. Pande, Pranav Garg, and Greg Goldblatt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suren A. Tatulian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tatulian, S.A. (2019). FTIR Analysis of Proteins and Protein–Membrane Interactions. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 2003. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9512-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9512-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9511-0

  • Online ISBN: 978-1-4939-9512-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics