Skip to main content

Advertisement

Log in

Toward hybridization assays without PCR using universal nanoamplicons

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An innovative scheme for signal amplification using random tetramer-modified gold nanoparticles, termed “nanoamplicons,” has been developed for hybridization assay without PCR. Large numbers of nanoamplicons could be integrated onto one target, providing much greater amplification than the larger nanoparticles usually adopted. Using M13mp18 single-strand DNA as a target, this concept is shown to be a feasible approach to detecting 0.17 amol L−1 DNA without target amplification, based on microgravimetric detection of the adsorption of the probe–target–nanoamplicons complex via thiol–gold binding. To our knowledge, this method has a sensitivity that is close to that of PCR and superior to those of nanoparticle-based methods reported previously. Additionally, this novel nanoamplicon could be prepared in the same way and used for all diagnostic tests; such universality would make the nanoamplicons highly advantageous for the generalization and standardization of bioassays, and when applying this new technology in clinical laboratories.

A novel signal amplification method for DNA detection with subattomolarsensitivity has been developed using random tetramer-modified gold nanoparticlesas nanoamplicons, which are easily prepared with high uniformity and can be universally adaptedto any sequences

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

References

  1. Schweitzer B, Kingsmore S (2001) Curr Opin Biotechnol 12:21–27

    Article  CAS  Google Scholar 

  2. Millar BC, Moore JE (2004) Methods Mol Biol 266:139–166

    CAS  Google Scholar 

  3. Alivisatos P (2004) Nat Biotechnol 22:47–52

    Article  CAS  Google Scholar 

  4. Katz E, Willner I (2004) Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  5. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  6. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078–1081

    Article  CAS  Google Scholar 

  7. Reynolds RA, Mirkin CA, Letsinger RL (2000) J Am Chem Soc 122:3795–3796

    Article  CAS  Google Scholar 

  8. Storhoff JJ, Lucas AD, Garimella V, Bao YP, Muller UR (2004) Nat Biotechnol 22:883–887

    Article  CAS  Google Scholar 

  9. Nam J-M, Stoeva S, Mirkin CA (2004) J Am Chem Soc 126:5932–5933

    Article  CAS  Google Scholar 

  10. Li H, Rothberg LJ (2004) J Am Chem Soc 126:10958–10961

    Article  CAS  Google Scholar 

  11. Liu S, Zhang Z, Han M (2005) Anal Chem 77:2595–2600

    Article  CAS  Google Scholar 

  12. Mo Z, Liang Y, Wang H, Liu F, Xue Y (2005) Anal Bioanal Chem 382:996–1000

    Article  CAS  Google Scholar 

  13. Mo Z, Wang H, Liang Y, Liu F, Xue Y (2005) Analyst 130:1589–1594

    Article  CAS  Google Scholar 

  14. Stoeva SI, Lee JS, Thaxton CS, Mirkin CA (2006) Angew Chem Int Ed 45:3303–3306

    Article  CAS  Google Scholar 

  15. Agrawal A, Zhang C, Byassee T, Tripp RA, Nie S (2006) Anal Chem 78:1061–1070

    Article  CAS  Google Scholar 

  16. Janshoff A, Galla H-J, Steinem C (2000) Angew Chem Int Ed 39:4004–4032

    Article  CAS  Google Scholar 

  17. Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Article  CAS  Google Scholar 

  18. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  19. Frens G (1973) Nature 241:20–22

    CAS  Google Scholar 

  20. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  21. Huang E, Satjapipat M, Han S, Zhou F (2001) Langmuir 17:1215–1224

    Article  CAS  Google Scholar 

  22. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) Anal Chem 72:5535–5541

    Article  CAS  Google Scholar 

  23. Sauerbrey G (1959) Z Phys 155:206–222

    Article  CAS  Google Scholar 

  24. Casero E, Darder M, Díaz DJ, Pariente F, Martín-Gago JA, Abruña H, Lorenzo E (2003) Langmuir 19:6230–6235

    Article  CAS  Google Scholar 

  25. Georgiadis RM, Peterlinz KA, Peterson AW (2000) J Am Chem Soc 122:3166–3173

    Article  CAS  Google Scholar 

  26. Huang E, Satjapipat M, Han S, Zhou F (2001) Langmuir 17:1215–1224

    Article  CAS  Google Scholar 

  27. Petrovykh DY, Kimura-Suda H, Whitman LJ, Tarlov MJ (2003) J Am Chem Soc 125:5219–5226

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Ministry of Science and Technology of the People’s Republic of China under Contracts 03C26215100252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-H. Mo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, ZH., Wei, XL. Toward hybridization assays without PCR using universal nanoamplicons. Anal Bioanal Chem 386, 2219–2223 (2006). https://doi.org/10.1007/s00216-006-0877-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0877-4

Keywords

Navigation