Skip to main content
Log in

Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple, sensitive, and reliable method based on a combination of multi-walled carbon nanotubes with incorporated β-cyclodextrin (β-CD-MWNTs) and a polyaniline (PANI) film-modified glassy-carbon (GC) electrode has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The PANI film had good anti-interference properties and long-term stability, because of the permselective and protective properties of the conducting redox polymer film. The acid-treated MWNTs with carboxylic acid functional groups promoted the electron-transfer reaction of DA and inhibited the voltammetric response of AA. Sensitive detection of DA was further improved by the preconcentration effect of formation of a supramolecular complex between β-CD and DA. The analytical response of the β-CD-MWNTs/PANI film to the electrochemical behavior of DA was, therefore, better than that of a MWNTs/PANI film, a PANI film, or a bare glassy-carbon (GC) electrode. Under the conditions chosen a linear calibration plot was obtained in the range 1.0 × 10−7–1.0 × 10−3 mol L−1 and the detection limit was 1.2 × 10−8 mol L−1. Interference from AA was effectively eliminated and the sensitivity, selectivity, stability, and reproducibility of the electrodes was excellent for determination of DA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wightman R, Amatorh C, Engstrom R, Hale P, Kristensen E, Kubr W, May L (1988) Neuroscience 25:513–523

    Article  CAS  Google Scholar 

  2. Wightman R, May L, Michael A (1988) Anal Chem 60:769A–770A

    CAS  Google Scholar 

  3. Adams R (1976) Anal Chem 48:1128A–1137A

    Article  Google Scholar 

  4. Kawagoe K, Wightman R (1994) Talanta 41:865–874

    Article  CAS  Google Scholar 

  5. Raj C, Okajima T, Ohsaka T (2003) J Electroanal Chem 543:127–133

    Article  CAS  Google Scholar 

  6. Raj C, Tokuda K, Ohsaka T (2001) Bioelectrochemistry 53:183–191

    Article  CAS  Google Scholar 

  7. Raj C, Ohsaka T (2001) J Electroanal Chem 496:44–49

    Article  CAS  Google Scholar 

  8. Ciszewski A, Milczarek G (1999) Anal Chem 71:1055–1061

    Article  CAS  Google Scholar 

  9. Mo J, Ogorevc B (2001) Anal Chem 73:1196–1202

    Article  CAS  Google Scholar 

  10. Iijima S (1991) Nature (London) 354:56–58

    Article  CAS  Google Scholar 

  11. Kuznetsova A, Mawhinney D, Naumenko V, Yates Jr J, Liu J, Smalley R (2000) Chem Phys Lett 321:292–296

    Article  CAS  Google Scholar 

  12. Wang Z, Liu J, Liang Q, Wang Y, Luo G (2002) Analyst 127:653–658

    Article  CAS  Google Scholar 

  13. Zhang P, Wu F, Zhao G, Wei X (2005) Bioelectrochemistry 67:109-114

    Article  CAS  Google Scholar 

  14. Ly S (2006) Bioelectrochemistry 68:227–231

    Article  CAS  Google Scholar 

  15. Zhang M, Gong K, Zhang H, Mao L (2005) Biosensors Bioelectron 20:1270–1276

    Article  CAS  Google Scholar 

  16. Hoa D, Suresh Kumar T, Punekar N, Srinivasa R, Lal R, Contractor A (1992) Anal Chem 64:2645–2646

    Article  CAS  Google Scholar 

  17. Sangodkar H, Sukeerthi S, Srinivasa R, Lal R, Contractor A (1996) Anal Chem 68:779–783

    Article  CAS  Google Scholar 

  18. Qu F, Yang M, Jiang J, Shen G, Yu R (2005) Anal Biochem 344:108–114

    Article  CAS  Google Scholar 

  19. Li G, Fang H, Chen H (1994) Chemical Research and Application, China, 6:7–12

    Google Scholar 

  20. Rekharsky M, Inoue Y (1998) Chem Rev 98:1875–1917

    Article  CAS  Google Scholar 

  21. Zhang Q, Wang N, Zhan W, Xie F, Chen X (2003) Chinese Journal of Spectroscopy Laboratory 20:749–752

    Google Scholar 

  22. Wang Z, Wang Y, Luo G (2002) Analyst 127:1353–1358

    Article  CAS  Google Scholar 

  23. Wang G, Liu X, Yu B, Luo G (2004) J Electroanal Chem 576:227–231

    Article  Google Scholar 

  24. Wang Z, Xiao S, Chen Y (2006) J Electroanal Chem 589:237–242

    Article  CAS  Google Scholar 

  25. He J, Yang Y, Yang X, Liu Y, Liu Z, Shen G, Yu R (2006) Sensors Actuators B 114:94–100

    Article  Google Scholar 

  26. Bard A, Faulkner L (1980) (eds) Electrochemical methods. Wiley, New York

  27. Murray R (1984) (eds) Electroanalytical chemistry. Marcel Dekker, New York, 13:191–368

  28. Adams R (1969) J Pharm Sci 58:1171–1184

    Article  CAS  Google Scholar 

  29. Malem F, Mandler D (1993) Anal Chem 65:37–41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanzhi Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, T., Wei, W. & Zeng, J. Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin. Anal Bioanal Chem 386, 2087–2094 (2006). https://doi.org/10.1007/s00216-006-0845-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0845-z

Keywords

Navigation