Skip to main content
Log in

Advanced CPMAS-13C NMR techniques for molecular characterization of size-separated fractions from a soil humic acid

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A humic acid extracted from a volcanic soil was subjected to preparative high-performance size-exclusion chromatography (HPSEC) to reduce its molecular complexity and eleven different size fractions were obtained. Cross-polarization magic-angle spinning 13C NMR (CPMAS 13C NMR) analysis performed with variable contact-time (VCT) pulse sequences showed that the largest molecular-size fractions contained aromatic, alkyl, and carbohydrate-like components. The carbohydrate-like content and the alkyl chain length seemed to decrease with decreasing molecular size. Progressive reduction of aromatic carbon atoms was also observed with decreasing molecular size of the separated fractions. Mathematical treatment of the results from VCT experiments enabled cross polarization (T CH) and proton spin–lattice relaxation (\( T_{{1\rho }} {\left( H \right)} \)) times to be related to structural differences among the size fractions. The conformational distribution indicated that the eleven size fractions could be allocated to two main groups. The first group, with larger nominal molecular sizes, was characterized by molecular domains with slower local molecular motion. The second group of size fractions, with smaller nominal molecular sizes, was characterized by a larger number of molecular domains with faster local molecular motion. The T CH and \( T_{{1\rho }} {\left( H \right)} \) values suggested that either condensed or strongly associated aromatic systems were predominant in the size fractions with the largest apparent molecular dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, NY

    Google Scholar 

  2. Huang W, Peng P, Yu Z, Fu J (2003) Appl Geochem 18:955–972

    Article  CAS  Google Scholar 

  3. Piccolo A (ed) (1996) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 225–264

  4. Schlesinger WH (1997) Biogeochemistry. An analysis of global changes, 2nd edn. Academic Press, San Diego

    Google Scholar 

  5. Piccolo A (2002) Adv Agronomy 75:57–134

    Article  CAS  Google Scholar 

  6. Sutton R, Sposito G (2005) Environ Sci Technol 39:9011–9015

    Article  CAS  Google Scholar 

  7. Piccolo A, Spiteller M (2003) Anal Bioanal Chem 377:1047–1059

    Article  CAS  Google Scholar 

  8. Stenson AC, Landing WM, Marshall AG, Cooper WT (2002) Anal Chem 74:4397–4409

    Article  CAS  Google Scholar 

  9. Stenson AC, Marshall AG, Cooper WT (2003) Anal Chem 75:1275–1284

    Article  CAS  Google Scholar 

  10. Piccolo A, Conte P, Trivellone E, van Lagen B, Buurman P (2002) Environ Sci Technol 36:76–84

    Article  CAS  Google Scholar 

  11. Simpson AJ (2002) Magn Res Chem 40:S72–S82

    Article  CAS  Google Scholar 

  12. Simpson AJ, Kingery WL, Hayes MHB, Spraul M, Humpfer E, Dvortsak P, Kerssebaum R, Godejohann M, Hofmann M (2002) Naturwissenschaften 89:84–88

    Article  CAS  Google Scholar 

  13. Conte P, Piccolo A (1999) Environ Sci Technol 33:1682–1690

    Article  CAS  Google Scholar 

  14. Piccolo A, Conte P, Spaccini R, Chiarella M (2003) Biol Fert Soils 37:255–259

    CAS  Google Scholar 

  15. Conte P, Spaccini R, Piccolo A (2004) Progr Nucl Magn Res Spectrom 44:215–223

    Article  CAS  Google Scholar 

  16. Conte P, Piccolo A, van Lagen B, Buurman P, Hemminga MA (2002) Solid State Nucl Magn Res 21:158–170

    Article  CAS  Google Scholar 

  17. Alemany LB, Grant DM, Alger TD, Pugmire RJ (1983) J Am Chem Soc 105:6697–6704

    Article  CAS  Google Scholar 

  18. Wilson MA (1987) NMR techniques and applications in geochemistry and soil chemistry, 1st edn. Pergamon Press, London

    Google Scholar 

  19. Preston CM (1996) Soil Sci 161:144–166

    Article  CAS  Google Scholar 

  20. Preston CM (2001) Can J Soil Sci 81:255–270

    CAS  Google Scholar 

  21. Conte P, Piccolo A, van Lagen B, Buurman P, de Jager PA (1997) Geoderma 80:327–338

    Article  CAS  Google Scholar 

  22. Conte P, Piccolo A, van Lagen B, Buurman P, de Jager PA (1997) Geoderma 80:339–352

    Article  CAS  Google Scholar 

  23. Smernik RJ, Oades JM (2001) Eur J Soil Sci 52:103–120

    Article  Google Scholar 

  24. Yao XL, Schmidt-Rohr K, Hong M (2001) J Magn Res 149:139–143

    Article  CAS  Google Scholar 

  25. Duer MJ (ed) (2002) Solid-state NMR spectroscopy: principles and applications. Blackwell Science, UK

    Google Scholar 

  26. Cozzolino A, Conte P, Piccolo A (2001) Soil Biol Biochem 33:563–571

    Article  CAS  Google Scholar 

  27. Cobas JC, Sardina FJ (2003) Concepts Magn Res A 19:80–96

    Article  CAS  Google Scholar 

  28. Peuravuori J, Ingman P, Pihlaja K (2003) Talanta 59:177–189

    Article  CAS  Google Scholar 

  29. Mori S, Barth HG (1994) Size exclusion chromatography. Springer, Berlin Heidelberg New York

    Google Scholar 

  30. Peuravuori J (2005) Environ Sci Technol 39:5541–5549

    Article  CAS  Google Scholar 

  31. Lindberg JJ, Hortling B (1985) Adv Polym Sci 66:1–22

    CAS  Google Scholar 

  32. Brown MR (1982) Cellulose and other natural polymer systems: biogenesis, structure, and degradation. Plenum, New York

    Google Scholar 

  33. Haiber S, Herzog H, Burba P, Gosciniak B, Lambert J (2001) Fresenius J Anal Chem 369:457–460

    Article  CAS  Google Scholar 

  34. Clauss J, Schmidt-Rohr K, Spiess HW (1993) Acta Polym 44:1–17

    Article  CAS  Google Scholar 

  35. Wu RR, Kao HM, Jang FH, Woo EM (2001) J Chin Chem Soc 48:709–716

    CAS  Google Scholar 

  36. Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid state NMR and polymers. Academic Press, London

    Google Scholar 

Download references

Acknowledgment

This work was partially funded by Ministero dell’Istruzione e della Ricerca (MIUR), project PRIN 2004 n. 2004075971_003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pellegrino Conte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conte, P., Spaccini, R. & Piccolo, A. Advanced CPMAS-13C NMR techniques for molecular characterization of size-separated fractions from a soil humic acid. Anal Bioanal Chem 386, 382–390 (2006). https://doi.org/10.1007/s00216-006-0637-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0637-5

Keywords

Navigation