Skip to main content
Log in

Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrospray ionization mass spectrometry (ESI-MS) was used to evaluate the average molecular mass of terrestrial humic substances, such as humic (HA) and fulvic (FA) acids from a soil, and humic acid from a lignite (NDL). Their ESI mass spectra, by direct infusion, gave average molecular masses comparable to those previously obtained for aquatic humic materials. The soil HA and FA were further separated in size-fractions by preparative high performance size exclusion chromatography (HPSEC) and analyzed with ESI-MS by both direct infusion and a further on-line analytical HPSEC. Unexpectedly, their average molecular mass was only slightly less than for the bulk sample and, despite different nominal molecular size, did not substantially vary among size-fractions. The values increased significantly (up to around 1200 Da) after on-line analytical HPSEC for the HA bulk sample, at both pH 8 and 4, and for the HA size-fractions when pH was reduced from 8 to 4. It was noticed that HA size-fractions at pH 8 were separated by on-line HPSEC in further peaks showing average masses which progressively increased with elution volume. Furthermore, when the HA and NDL bulk samples were sequentially ultracentrifuged at increasing rotational speed, their supernatants showed mass values which were larger than bulk samples and increased with rotational speed. These variations in mass values indicate that the electrospray ionization is dependent on the composition of the humic molecular mixtures and increases when their heterogeneity is progressively reduced. It is suggested that the dominance of hydrophobic compounds in humic supramolecular associations may inhibit the electrospray ionization of hydrophilic components. Our results show that ESI-MS is reasonably applicable to humic substances only after an extensive reduction of their chemical complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) (1989) Humic substances II. In search of structure. Wiley, New York, pp4–31

  2. Piccolo A (ed) (1996) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp225–264

  3. Stevenson FJ, Cole MA (1999) The cycles of soils, 2nd edn. Wiley, New York

  4. Hayes MHB, Clapp CE (2001) Soil Sci 166:723

    Article  CAS  Google Scholar 

  5. Piccolo A (2002) Adv Agron 75:57

    CAS  Google Scholar 

  6. Ghosh K, Schnitzer M (1980) Soil Sci 129:266

    CAS  Google Scholar 

  7. Wershaw RL (1993) Environ Sci Technol 27:814

    Google Scholar 

  8. Engebretson RR, von Wandruszka R (1994) Environ Sci Technol 28:1934

    Google Scholar 

  9. Stevenson FJ (1994) Humus chemistry. Genesis, composition, and reaction, 2nd edn. Wiley, New York

  10. Conte P, Piccolo A (1999) Environ Sci Technol 33:1682

    Article  CAS  Google Scholar 

  11. Piccolo A, Conte P, Trivellone E, Van Lagen B, Buurman P (2002) Environ Sci Technol 36:76

    Article  CAS  PubMed  Google Scholar 

  12. Piccolo A, Conte P (2000) Adv Environ Res 3:508

    Google Scholar 

  13. Hayes MHB, Wilson WS (eds) (1997) Humic substances, peats and sludges. RSC, Cambridge, pp39–45

  14. Simpson AJ, Kingery WL, Shaw DR, Spraul M, Humpfer E, Dvortsak P (2001) Environ Sci Technol 35:3321

    Article  CAS  PubMed  Google Scholar 

  15. Simpson AJ, Kingery WL, Shaw DR, Spraul M, Humpfer E, Dvortsak P, Kerssebaum R, Godejohann M, Hofmann M (2002) Naturwissenschaften 89:84

    Article  Google Scholar 

  16. Simpson AJ (2002) Magn Reson Chem 40:S72

    Article  CAS  Google Scholar 

  17. Buurman P, van Lagen B, Piccolo A (2002) Org Geochem 33:367

    Article  CAS  Google Scholar 

  18. McIntyre C, Batts BD, Jardine DR (1997) J Mass Spectrom 32:328

    Google Scholar 

  19. Klaus U, Pfeiffer T, Spiteller M (2000) Environ Sci Technol 34:3514

    Article  CAS  Google Scholar 

  20. Ikeda K, Arimura R, Echigo S, Shimizu Y, Minear RA, Matsui S (2000) Water Sci Technol 42:383

    CAS  Google Scholar 

  21. Persson L, Alsberg T, Kiss G, Odham G (2000) Rapid Commun Mass Spectrom 14: 286

    Article  CAS  PubMed  Google Scholar 

  22. Moulin V, Reiller P, Amekraz B, Moulin C (2001) Rapid Commun Mass Spectrom 15: 2488

    Article  CAS  PubMed  Google Scholar 

  23. Pfeifer T, Uwe K, Hoffmann R, Spiteller M (2001) J Chrom 926:151

    Article  CAS  Google Scholar 

  24. McIntyre C, Jardine DR, McRae C (2001) Rapid Commun Mass Spectrom 15:1974

    Article  CAS  Google Scholar 

  25. Plancque G, Amekraz B, Moulin V, Toulhat P, Moulin C (2001) Rapid Commun Mass Spectrom 15:827

    Article  CAS  PubMed  Google Scholar 

  26. Leenheer JA, Rostad CE, Gates PM, Furlong ET, Ferrer I (2001) Anal Chem 73: 1461

    Article  CAS  PubMed  Google Scholar 

  27. Cole EB (1997) Electrospray ionization mass spectrometry. Fundamentals, instrumentation and applications. Wiley, New York

  28. Cole EB (2000) J Mass Spectrom 35:763

    Google Scholar 

  29. Fievre A, Solouki T, Marshall AG, Cooper WT (1997) Energy Fuels 11:554

    Article  CAS  Google Scholar 

  30. Solouki T, Freitas MA, Alomary A (1999) Anal Chem 71:4719

    Article  CAS  Google Scholar 

  31. Brown TL, Rice JA (2000) Anal Chem 72:384

    Article  CAS  PubMed  Google Scholar 

  32. Stenson AC, Landing WM, Marshall AG, Cooper WT (2002) Anal Chem 74:4397

    Article  CAS  PubMed  Google Scholar 

  33. Novotny FJ, Rice JA (1995) Environ Sci Technol 29:2464

    CAS  Google Scholar 

  34. De Hoffmann E, Stroobant V (2001) Mass spectrometry. Principles and applications, 2nd edn. Wiley, Chichester, p36

  35. Cozzolino A, Conte P, Piccolo A (2001) Soil Biol Biochem 33:563

    Article  CAS  Google Scholar 

  36. Mueller M, Schmitt D, Frimmel F (2000) Environ Sci Technol 34:4867

    Article  Google Scholar 

  37. Cooper AR (ed) (1989) Determination of molecular weight. Wiley, New York, pp1–6

  38. Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New York, pp82–85

  39. Tanford C (1991) The hydrophobic effect: formation of micelles and biological membranes. Krieger, Malabar, Florida

    Google Scholar 

Download references

Acknowledgements

The first author is grateful for the 1999 award received from the Alexander von Humboldt Foundation that supported his research in Germany. The collaboration of Dr. T. Pfeifer, Dr. K.Sielex, and Mrs. S. Richter in ESI analyses is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Piccolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccolo, A., Spiteller, M. Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Anal Bioanal Chem 377, 1047–1059 (2003). https://doi.org/10.1007/s00216-003-2186-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2186-5

Keywords

Navigation