Skip to main content
Log in

Comparison of high-resolution mass spectrometry acquisition methods for the simultaneous quantification and identification of per- and polyfluoroalkyl substances (PFAS)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Simultaneous identification and quantification of per- and polyfluoroalkyl substances (PFAS) were evaluated for three quadrupole time-of-flight mass spectrometry (QTOF) acquisition methods. The acquisition methods investigated were MS-Only, all ion fragmentation (All-Ions), and automated tandem mass spectrometry (Auto-MS/MS). Target analytes were the 25 PFAS of US EPA Method 533 and the acquisition methods were evaluated by analyte response, limit of quantification (LOQ), accuracy, precision, and target-suspect screening identification limit (IL). PFAS LOQs were consistent across acquisition methods, with individual PFAS LOQs within an order of magnitude. The mean and range for MS-Only, All-Ions, and Auto-MS/MS are 1.3 (0.34–5.1), 2.1 (0.49–5.1), and 1.5 (0.20–5.1) pg on column. For fast data processing and tentative identification with lower confidence, MS-Only is recommended; however, this can lead to false-positives. Where high-confidence identification, structural characterisation, and quantification are desired, Auto-MS/MS is recommended; however, cycle time should be considered where many compounds are anticipated to be present. For comprehensive screening workflows and sample archiving, All-Ions is recommended, facilitating both quantification and retrospective analysis. This study validated HRMS acquisition approaches for quantification (based upon precursor data) and exploration of identification workflows for a range of PFAS compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Eposure Sci Environ Epidemiol. 2019;29(2):131–47.

    Article  CAS  Google Scholar 

  2. Cousins IT, Johansson JH, Salter ME, Sha B, Scheringer M. Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS). Environ Sci Technol. 2022;56(16):11172–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95.

    Article  PubMed  CAS  Google Scholar 

  4. Wang Z, Buser AM, Cousins IT, Demattio S, Drost W, Johansson O, et al. A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environ Sci Technol. 2021;55(23):15575–8.

    Article  PubMed  CAS  Google Scholar 

  5. Lorenzo M, Campo J, Farré M, Pérez F, Picó Y, Barceló D. Perfluoroalkyl substances in the Ebro and Guadalquivir river basins (Spain). Sci Total Environ. 2016;540(Supplement C):191–9.

  6. Lu Y, Meng L, Ma D, Cao H, Liang Y, Liu H, et al. The occurrence of PFAS in human placenta and their binding abilities to human serum albumin and organic anion transporter 4. Environ Pollut. 2021;273:116460.

    Article  PubMed  CAS  Google Scholar 

  7. Baduel C, Mueller JF, Rotander A, Corfield J, Gomez-Ramos M-J. Discovery of novel per- and polyfluoroalkyl substances (PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility. Chemosphere. 2017;185:1030–8.

    Article  PubMed  CAS  Google Scholar 

  8. Xian F, Hendrickson CL, Marshall AG. High resolution mass spectrometry. Anal Chem. 2012;84(2):708–19.

    Article  PubMed  CAS  Google Scholar 

  9. Krauss M, Singer H, Hollender J. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397(3):943–51.

    Article  PubMed  CAS  Google Scholar 

  10. 3M Company The science of organic fluorochemistry. 1999.

  11. Lindstrom AB, Strynar MJ, Libelo EL. Polyfluorinated compounds: past, present, and future. Environ Sci Technol. 2011;45(19):7954–61.

    Article  PubMed  CAS  Google Scholar 

  12. Giesy JP, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol. 2001;35(7):1339–42.

    Article  PubMed  CAS  Google Scholar 

  13. Calafat AM, Wong L-Y, Kuklenyik Z, Reidy JA, Needham LL. Polyfluoroalkyl chemicals in the US population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect. 2007;115:1596–602.

  14. U.S. EPA. EPA and 3M announce phase out of PFOS 2000. https://archive.epa.gov/epapages/newsroom_archive/newsreleases/33aa946e6cb11f35852568e1005246b4.html.

  15. U.S. EPA. Fact Sheet: 2010/2015 PFOA Stewardship Program.2022 Accessed 25/08/2022. Available from: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program.

  16. Hopkins ZR, Sun M, DeWitt JC, Knappe DRU. Recently Detected Drinking Water Contaminants: GenX and Other Per- and Polyfluoroalkyl Ether Acids. J - Am Water Works Assoc. 2018;110(7):13–28.

    Article  CAS  Google Scholar 

  17. Zhang C, Hopkins ZR, McCord J, Strynar MJ, Knappe DRU. Fate of Per- and Polyfluoroalkyl Ether Acids in the Total Oxidizable Precursor Assay and Implications for the Analysis of Impacted Water. Environ Sci Technol Lett. 2019;6(11):662–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Haukås M, Berger U, Hop H, Gulliksen B, Gabrielsen GW. Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ Pollut. 2007;148(1):360–71.

    Article  PubMed  Google Scholar 

  19. Ghisi R, Vamerali T, Manzetti S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ Res. 2019;169:326–41.

    Article  PubMed  CAS  Google Scholar 

  20. Steenland K, Fletcher T, Savitz DA. Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect. 2010;118(8):1100–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, et al. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect. 2007;115(11):1670–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Blake BE, Pinney SM, Hines EP, Fenton SE, Ferguson KK. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environ Pollut. 2018;242:894–904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kwiatkowski CF, Andrews DQ, Birnbaum LS, Bruton TA, DeWitt JC, Knappe DRU, et al. Scientific Basis for Managing PFAS as a Chemical Class. Environ Sci Technol Lett. 2020;7(8):532–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yang L, Amad Ma, Winnik WM, Schoen AE, Schweingruber H, Mylchreest I, et al. Investigation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput liquid chromatography/tandem mass spectrometry assays. Rapid Commun Mass Spectrometry. 2002;16(21):2060–6.

  25. Schneider BB, Nazarov EG, Londry F, Vouros P, Covey TR. Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. Mass Spectrom Rev. 2016;35(6):687–737.

    Article  PubMed  CAS  Google Scholar 

  26. Cuthbertson AA, Liberatore HK, Kimura SY, Allen JM, Bensussan AV, Richardson SD. Trace Analysis of 61 Emerging Br-, Cl-, and I-DBPs: New Methods to Achieve Part-Per-Trillion Quantification in Drinking Water. Anal Chem. 2020;92(4):3058–68.

    Article  PubMed  CAS  Google Scholar 

  27. Wallace MA, McCord JP. Chapter 16 - High-resolution mass spectrometry. In: Beauchamp J, Davis C, Pleil J, editors. Breathborne Biomarkers and the Human Volatilome. 2nd ed. Boston: Elsevier; 2020. p. 253–70.

    Chapter  Google Scholar 

  28. Radionova A, Filippov I, Derrick PJ. In pursuit of resolution in time-of-flight mass spectrometry: A historical perspective. Mass Spectrom Rev. 2016;35(6):738–57.

    Article  PubMed  CAS  Google Scholar 

  29. Rifai N, Horvath AR, Wittwer C, Hoofnagle AN. Principles and applications of clinical mass spectrometry : small molecules, peptides, and pathogens. Amsterdam: Elsevier Amsterdam, Netherlands; 2018. Available from: https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1668690.

  30. Glish GL, Burinsky DJ. Hybrid mass spectrometers for tandem mass spectrometry. J Am Soc Mass Spectrom. 2008;19(2):161–72.

    Article  PubMed  CAS  Google Scholar 

  31. Herrera-Lopez S, Hernando MD, García-Calvo E, Fernández-Alba AR, Ulaszewska MM. Simultaneous screening of targeted and non-targeted contaminants using an LC-QTOF-MS system and automated MS/MS library searching. J Mass Spectrom. 2014;49(9):878–93.

    Article  PubMed  CAS  Google Scholar 

  32. Lucini L, Pellegrino R, Cimino N, Kane D, Pretali L. QqQ and Q-TOF liquid chromatography mass spectrometry direct aqueous analysis of herbicides and their metabolites in water. Int J Mass Spectrom. 2015;392:16–22.

    Article  CAS  Google Scholar 

  33. Soler C, Hamilton B, Furey A, James KJ, Mañes J, Picó Y. Comparison of four mass analyzers for determining carbosulfan and its metabolites in citrus by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(14):2151–64.

    Article  PubMed  CAS  Google Scholar 

  34. Ferrer I, Thurman EM. Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) for the analysis of emerging contaminants. TrAC, Trends Anal Chem. 2003;22(10):750–6.

    Article  CAS  Google Scholar 

  35. Chernushevich IV, Loboda AV, Thomson BA. An introduction to quadrupole–time-of-flight mass spectrometry. J Mass Spectrom. 2001;36(8):849–65.

    Article  PubMed  CAS  Google Scholar 

  36. Wang R, Yin Y, Zhu Z-J. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal Bioanal Chem. 2019;411(19):4349–57.

    Article  PubMed  CAS  Google Scholar 

  37. Liu Y, D’Agostino LA, Qu G, Jiang G, Martin JW. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC, Trends Anal Chem. 2019;121:115420.

    Article  CAS  Google Scholar 

  38. Allen DR, McWhinney BC. Quadrupole time-of-flight mass spectrometry: a paradigm shift in toxicology screening applications. Clin Biochem Rev. 2019;40(3):135–46.

    Article  PubMed  PubMed Central  Google Scholar 

  39. D’Agostino LA, Mabury SA. Identification of Novel Fluorinated Surfactants in Aqueous Film Forming Foams and Commercial Surfactant Concentrates. Environ Sci Technol. 2014;48(1):121–9.

    Article  PubMed  Google Scholar 

  40. Baygi SF, Fernando S, Hopke PK, Holsen TM, Crimmins BS. Nontargeted Discovery of Novel Contaminants in the Great Lakes Region: A Comparison of Fish Fillets and Fish Consumers. Environ Sci Technol. 2021;55(6):3765–74.

    Article  PubMed  CAS  Google Scholar 

  41. Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, et al. Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environ Sci Technol. 2017;51(4):2047–57.

    Article  PubMed  CAS  Google Scholar 

  42. Place BJ, Field JA. Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams Used by the US Military. Environ Sci Technol. 2012;46(13):7120–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gonzalez de Vega R, Cameron A, Clases D, Dodgen TM, Doble PA, Bishop DP. Simultaneous targeted and non-targeted analysis of per- and polyfluoroalkyl substances in environmental samples by liquid chromatography-ion mobility-quadrupole time of flight-mass spectrometry and mass defect analysis. J Chromatogr A. 2021;1653:462423.

  44. Trier X, Granby K, Christensen JH. Tools to discover anionic and nonionic polyfluorinated alkyl surfactants by liquid chromatography electrospray ionisation mass spectrometry. J Chromatogr A. 2011;1218(40):7094–104.

    Article  PubMed  CAS  Google Scholar 

  45. Newton S, McMahen R, Stoeckel JA, Chislock M, Lindstrom A, Strynar M. Novel Polyfluorinated Compounds Identified Using High Resolution Mass Spectrometry Downstream of Manufacturing Facilities near Decatur Alabama. Environ Sci Technol. 2017;51(3):1544–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rana S, Marchiandi J, Partington JM, Szabo D, Heffernan AL, Symons RK, et al. Identification of novel polyfluoroalkyl substances in surface water runoff from a chemical stockpile fire. Environ Pollut. 2022;313:120055.

    Article  PubMed  CAS  Google Scholar 

  47. Bugsel B, Zwiener C. LC-MS screening of poly- and perfluoroalkyl substances in contaminated soil by Kendrick mass analysis. Anal Bioanal Chem. 2020;412(20):4797–805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yu N, Guo H, Yang J, Jin L, Wang X, Shi W, et al. Non-Target and Suspect Screening of Per- and Polyfluoroalkyl Substances in Airborne Particulate Matter in China. Environ Sci Technol. 2018;52(15):8205–14.

    Article  PubMed  CAS  Google Scholar 

  49. Schulze B, Jeon Y, Kaserzon S, Heffernan AL, Dewapriya P, O’Brien J, et al. An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples. TrAC, Trends Anal Chem. 2020;133:116063.

    Article  CAS  Google Scholar 

  50. Rotander A, Kärrman A, Toms L-ML, Kay M, Mueller JF, Gómez Ramos MJ. novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole Time-of-Flight tandem mass spectrometry and a Case-Control approach. Environ Sci Technol. 2015;49(4):2434–42.

  51. Wang X, Yu N, Qian Y, Shi W, Zhang X, Geng J, et al. Non-target and suspect screening of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants. Water Res. 2020;183:115989.

    Article  PubMed  CAS  Google Scholar 

  52. González-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker AM, Etxebarria N, et al. Suspect and non-target screening: the last frontier in environmental analysis. Anal Methods. 2021;13(16):1876–904.

    Article  PubMed  Google Scholar 

  53. Jacob P, Wang R, Ching C, Helbling DE. Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water. Environ Sci Process Impacts. 2021;23(10):1554–65.

    Article  PubMed  CAS  Google Scholar 

  54. Wang Y, Yu N, Zhu X, Guo H, Jiang J, Wang X, et al. Suspect and Nontarget Screening of Per- and Polyfluoroalkyl Substances in Wastewater from a Fluorochemical Manufacturing Park. Environ Sci Technol. 2018;52(19):11007–16.

    Article  PubMed  CAS  Google Scholar 

  55. Gerlich M, Neumann S. MetFusion: integration of compound identification strategies. J Mass Spectrom. 2013;48(3):291–8.

    Article  PubMed  CAS  Google Scholar 

  56. Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J. Identification of Transformation Products of Organic Contaminants in Natural Waters by Computer-Aided Prediction and High-Resolution Mass Spectrometry. Environ Sci Technol. 2009;43(18):7039–46.

    Article  PubMed  CAS  Google Scholar 

  58. Charbonnet JA, McDonough CA, Xiao F, Schwichtenberg T, Cao D, Kaserzon S, et al. Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environ Sci Technol Lett. 2022;9(6):473–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Piva E, Fais P, Cecchetto G, Montisci M, Viel G, Pascali JP. Determination of perfluoroalkyl substances (PFAS) in human hair by liquid chromatography-high accurate mass spectrometry (LC-QTOF). J Chromatogr B. 2021;1172:122651.

    Article  CAS  Google Scholar 

  60. Crimmins BS, Xia X, Hopke PK, Holsen TM. A targeted/non-targeted screening method for perfluoroalkyl carboxylic acids and sulfonates in whole fish using quadrupole time-of-flight mass spectrometry and MSe. Anal Bioanal Chem. 2014;406(5):1471–80.

    Article  PubMed  CAS  Google Scholar 

  61. McCord JP, Groff LC, Sobus JR. Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. Environ Int. 2022;158:107011.

    Article  PubMed  Google Scholar 

  62. Martínez Bueno MJ, Ulaszewska MM, Gomez MJ, Hernando MD, Fernández-Alba AR. Simultaneous measurement in mass and mass/mass mode for accurate qualitative and quantitative screening analysis of pharmaceuticals in river water. J Chromatogr A. 2012;1256:80–8.

    Article  PubMed  Google Scholar 

  63. U.S. EPA. Method 533: determination of per- and polyfluoroalkyl substances in drinking water by isotope dilution anion exchange solid phase extraction and liquid chromatography/tandem mass spectrometry. Method. Cincinnati, OH., EPA US; 2019.

  64. Szabo D, Marchiandi J, Green MP, Mulder RA, Clarke BO. Evaluation and validation of methodologies for the extraction of per- and polyfluoroalkyl substances (PFASs) in serum of birds and mammals. Anal Bioanal Chem. 2022;414(9):3017–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Myers P. The essence of chromatography. Chromatographia. 2003;57(11):834-.

  66. Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev. 2018;37(4):513–32.

    Article  PubMed  CAS  Google Scholar 

  67. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ Sci Technol. 2014;48(4):2097–8.

    Article  PubMed  CAS  Google Scholar 

  68. Inc. PT. Collaborative data science Montréal, QC: Plotly Technologies Inc.; 2015. https://plot.ly.

  69. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.2023. https://www.R-project.org/.

  70. RStudio Team RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA2022. http://www.rstudio.com/.

  71. Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, et al. Welcome to the Tidyverse. Journal of open source software. 2019;4(43):1686.

    Article  Google Scholar 

  72. Kassambara A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2021.

  73. Mullin L, Katz DR, Riddell N, Plumb R, Burgess JA, Yeung LWY, et al. Analysis of hexafluoropropylene oxide-dimer acid (HFPO-DA) by liquid chromatography-mass spectrometry (LC-MS): Review of current approaches and environmental levels. TrAC, Trends Anal Chem. 2019;118:828–39.

    Article  CAS  Google Scholar 

  74. Holčapek M, Jirásko R, Lísa M. Recent developments in liquid chromatography–mass spectrometry and related techniques. J Chromatogr A. 2012;1259:3–15.

    Article  PubMed  Google Scholar 

  75. Krasny L, Huang PH. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Molecular Omics. 2021;17(1):29–42.

    Article  PubMed  CAS  Google Scholar 

  76. Anumol T, Merel S, Clarke BO, Snyder SA. Ultra high performance liquid chromatography tandem mass spectrometry for rapid analysis of trace organic contaminants in water. Chem Cent J. 2013;7:104.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Benskin JP, Bataineh M, Martin JW. Simultaneous Characterization of Perfluoroalkyl Carboxylate, Sulfonate, and Sulfonamide Isomers by Liquid Chromatography−Tandem Mass Spectrometry. Anal Chem. 2007;79(17):6455–64.

    Article  PubMed  CAS  Google Scholar 

  78. Sanchez JM. The inadequate use of the determination coefficient in analytical calibrations: How other parameters can assess the goodness-of-fit more adequately. J Sep Sci. 2021;44(24):4431–41.

    Article  PubMed  CAS  Google Scholar 

  79. King G. How Not to Lie with Statistics: Avoiding Common Mistakes in Quantitative Political Science. Am J Pol Sci. 1986;30:666.

    Article  Google Scholar 

  80. Zhang F, Ge W, Ruan G, Cai X, Guo T. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Proteomics. 2020;20(17–18):1900276.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the traditional owners of the land on which this research was conducted. The author acknowledges Trajan Scientific and Medical for supporting and facilitating this work and participating in the ARC Training Centre for Chemical Industries (IC170100020).

Author information

Authors and Affiliations

Authors

Contributions

JMP: Writing—original draft and editing, methodology, investigation, formal analysis, visualisation. SR: writing—original draft, methodology, investigation, formal analysis. DS: methodology, investigation, formal analysis, writing—review and editing. TA: writing—review and editing, investigation. BOC: project administration, funding acquisition, conceptualisation, supervision, writing—review and editing.

Corresponding author

Correspondence to Bradley O. Clarke.

Ethics declarations

Conflict of interest

T. Anumol is an employee of Agilent Technologies Inc, who supplied some instrumentation into the University of Melbourne laboratory. J. Partington and S. Rana receive scholarship funding from the Australian Government Research Training Program. B. Clarke and D. Szabo declare that they have no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.14 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partington, J.M., Rana, S., Szabo, D. et al. Comparison of high-resolution mass spectrometry acquisition methods for the simultaneous quantification and identification of per- and polyfluoroalkyl substances (PFAS). Anal Bioanal Chem 416, 895–912 (2024). https://doi.org/10.1007/s00216-023-05075-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05075-x

Keywords

Navigation