Skip to main content
Log in

Mass spectrometric real-time monitoring of enzymatic glycosidic hydrolysis, enzymatic inhibition and enzyme complexes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The mass spectrometric development of an enzymatic assay resulting in enzymatic activity, its reaction pathway and its dissociation constant are described for the first time within a single experiment. The method combines the performance of a mass spectrometry-compatible enzyme assay with the direct detection of specific enzyme complexes using hen egg white lysozyme as a model. The continuous liquid-flow technique applied, when hyphenated with electrospray ionization (ESI)–time-of-flight (ToF)–mass spectrometry (MS), permitted the simultaneous detection of several substances involved in product screening as well as the direct observation of dissociation constants. Dissociation constants for the product inhibitor N, N′, N″-triacetylchitotriose were calculated using a Scatchard plot (12×10−6 M) and the law of mass action (18–24×10−6 M), and these are in good agreement with constants obtained in earlier mass spectrometric (6–18×10−6 M) or spectroscopic (6–8×10−6 M) studies. Finally, the enzymatic hydrolysis of glycosidic substrate was monitored by ESI–ToF–MS in the presence of various inhibitors, thus leading to decreased activities in terms of their enzyme affinities. The associated inhibitor–enzyme complexes could be detected for up to lower micromolar K d values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Northrop DB, Simpson FB (1997) Bioorg Med Chem 5(4):641–644

    Article  CAS  Google Scholar 

  2. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Science 246:64–71

    Article  CAS  Google Scholar 

  3. Ganem B, Henion JD (1991) J Am Chem Soc 113(20):7818–7819

    Article  CAS  Google Scholar 

  4. Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR (1965) Nature 206:757–761

    Article  CAS  Google Scholar 

  5. Ganem B, Henion JD (2003) Bioorg Med Chem 11(3):311–314

    Article  CAS  Google Scholar 

  6. Kaltashov IA, Eyles SJ (2005) Mass spectrometry in biophysics: conformation and dynamics of biomolecules. Wiley, Hoboken, NJ

    Google Scholar 

  7. Przybylski M, Glocker MO (1996) Angew Chem Int Ed 35(8):806–826

    Article  CAS  Google Scholar 

  8. Loo JA (1997) Mass Spectrom Rev 16(1):1–23

    Article  CAS  Google Scholar 

  9. He F, Ramirez J, Lebrilla CB (1999) Int J Mass Spectrom 193(2–3):103–114

    CAS  Google Scholar 

  10. Veenstra TD (1999) Biophys Chem 79(2):63–79

    Article  CAS  Google Scholar 

  11. Loo JA (2000) Int J Mass Spectrom 200(1–3):175–186

    CAS  Google Scholar 

  12. Daniel JM, Friess SD, Rajagopalan S, Wendt S, Zenobi R (2002) Int J Mass Spectrom 216(1):1–27

    Article  CAS  Google Scholar 

  13. Breuker K (2004) Int J Mass Spectrom 239(1):33–41

    Article  CAS  Google Scholar 

  14. Heck AJ, Van Den Heuvel RH (2004) Mass Spectrom Rev 23(5):368–389

    Article  CAS  Google Scholar 

  15. Sheu SY, Yang DY, Selzle HL, Schlag EW (2003) Proc Natl Acad Sci USA 100(22):12683–12687

    Article  CAS  Google Scholar 

  16. Clark SM, Konermann L (2004) Anal Chem 76:7077–7083

    Article  CAS  Google Scholar 

  17. Lumb KJ, Aplin RT, Radford SE, Archer DB, Jeenes DJ, Lambert N, MacKenzie DA, Dobson CM, Lowe G (1992) FEBS Lett 296(2):153–157

    Article  CAS  Google Scholar 

  18. Nishimura S-I, Nagahori N, Takaya K, Tachibana Y, Miura N, Monde K (2005) Angew Chem Int Ed 44(4):571–575

    Article  CAS  Google Scholar 

  19. Schermann SM, Simmons DA, Konermann L (2005) Expert Rev Proteomics 2(4):475–485

    Article  CAS  Google Scholar 

  20. Imoto T, Johnson LN, North ACT, Phillips DC, Rupley JA (1972) Vertebrate lysozymes, 3 edn. Academic, New York

    Google Scholar 

  21. Schindler M, Assaf Y, Sharon N, Chipman DM (1977) Biochemistry 16:423–431

    Article  CAS  Google Scholar 

  22. Fukamizo T (2000) Curr Protein Pept Sci 1:105–124

    Article  CAS  Google Scholar 

  23. Masaki A, Fukamizo T, Otakara A, Torikata T, Hayashi K, Imoto T (1981) J Biochem (Tokyo) 90:527–533

    CAS  Google Scholar 

  24. Masaki A, Fukamizo T, Otakara A, Torikata T, Hayashi K, Imoto T (1981) J Biochem (Tokyo) 90:1167–1175

    CAS  Google Scholar 

  25. Fukamizo T, Hayashi K (1982) J Biochem (Tokyo) 91:619–626

    CAS  Google Scholar 

  26. Fukamizo T, Torikata T, Nagayama T, Minematsu T, Hayashi K (1983) J Biochem (Tokyo) 94:115–122

    CAS  Google Scholar 

  27. Fukamizo T, Minematsu T, Yanase Y, Hayashi K, Goto S (1986) Arch Biochem 250:312–321

    Article  CAS  Google Scholar 

  28. Fukamizo T, Goto S (1991) J Biochem (Tokyo) 109:416–420

    CAS  Google Scholar 

  29. Liesener A, Karst U (2005) Anal Bioanal Chem 382:1451–1464

    Article  CAS  Google Scholar 

  30. de Boer AR, Letzel T, Lingeman H, Irth H (2005) Anal Bioanal Chem 381:647–655

    Article  CAS  Google Scholar 

  31. Ge X, Sirich TL, Beyer MK, Desaire H, Leary JA (2001) Anal Chem 73(21):5078–5082

    Article  CAS  Google Scholar 

  32. Lee ED, Mück W, Henion JD, Covey TR (1989) J Am Chem Soc 111(13):4600–4604

    Article  CAS  Google Scholar 

  33. Letzel T, Irth H (2003) World Patent Application, WO 03/102222 A2, issued 11.12.2003

  34. deBoer AR, Letzel T, vanElswijk DA, Lingeman H, Niessen WMA, Irth H (2004) Anal Chem 76(11):3155–3161

    Article  CAS  Google Scholar 

  35. deBoer AR, Alcaide-Hidalgo JM, Krabbe JG, Kolkman J, vanEmdeBoas CN, Niessen WMA, Lingeman H, Irth H (2005) Anal Chem 77(24):7894–7900

    Article  CAS  Google Scholar 

  36. Scatchard G (1949) Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  37. Lim H-K, Hsieh YL, Ganem B, Henion JD (1995) J Mass Spectrom 30(5):708–714

    Article  CAS  Google Scholar 

  38. Loo JA, Peifeng H, McConnell P, Tom Mueller W, Sawyer TK, Thanabal V (1997) J Am Soc Mass Spectrom 8(3):234–243

    Article  CAS  Google Scholar 

  39. Daniel Ju M, McCombie G, Wendt S, Zenobi R (2003) J Am Soc MassSpectrom 14(5):442–448

    Article  CAS  Google Scholar 

  40. Letzel T, Derks RJ, Martha CT, van Marle A, Irth H (2006) J Pharm Biomed Anal 40(3):744–751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Vereinigung zur Förderung der Milchwissenschaftlichen Forschung an der TUM in Freising-Weihenstephan e.V. and from the Bund der Freunde der Technischen Universität München e. V. The authors gratefully acknowledge Tamo Fukamizo for calculating the plot showing the degradation of NAG6 by HEWL and very helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Letzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennhart, N., Letzel, T. Mass spectrometric real-time monitoring of enzymatic glycosidic hydrolysis, enzymatic inhibition and enzyme complexes. Anal Bioanal Chem 386, 689–698 (2006). https://doi.org/10.1007/s00216-006-0604-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0604-1

Keywords

Navigation