Skip to main content

Advertisement

Log in

Potentially implantable miniature batteries

  • REVIEW
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

All presently used batteries contain reactive, corrosive or toxic components and require strong cases, usually made of steel. As a battery is miniaturized, the required case dominates its size. Hence, the smallest manufactured batteries are about 50 mm3 in size, much larger then the integrated circuits or sensors of functional analytical packages, as exemplified by implantable glucose sensors for diabetes management. The status of the miniaturization of the power sources of such implantable packages is reviewed. Three microcells, consisting only of potentially harmless subcutaneously implantable anodes and cathodes, are considered. Because their electrolyte would be the subcutaneous interstitial fluid, the cells do not have a case. One potentially implantable cell has a miniature Nafion-coated Zn anode and a biocompatible hydrogel-shielded Ag/AgCl cathode. The core innovation on which the cell is based is the growth of a hopeite-phase Zn2+ conducting solid electrolyte film on the discharging anode. The film blocks the transport of O2 to the Zn, preventing its corrosion, while allowing the necessary transport of Zn2+. The second cell, with the same anode, would have a bioinert hydrogel-shielded wired bilirubin oxidase-coated carbon cathode, on which O2 dissolved in the subcutaneous fluid would be electroreduced to water. In the third cell, the glucose of the subcutaneous interstitial would be electrooxidized to gluconolactone at an implanted wired glucose anode, similar to that tested now for continuous glucose monitoring in diabetic people, and O2 in the subcutaneous fluid would be electroreduced to water on its wired bilirubin oxidase cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Csöregi E, Schmidtke DW, Heller A (1995) Anal Chem 67:1240–1244

    Article  PubMed  Google Scholar 

  2. Heller A (1999) Annu Rev Biomed Eng 1:153–175

    Article  PubMed  CAS  Google Scholar 

  3. Wagner JG, Schmidtke DW, Quinn CP, Fleming TF, Bernacky B, Heller A (1998) Proc Natl Acad Sci USA 95:6379–6382

    Article  PubMed  CAS  Google Scholar 

  4. Feldman B, Brazg R, Schwartz S, Weinstein R (2003) Diabetes Technol Ther 5:769–779

    Article  PubMed  CAS  Google Scholar 

  5. Boto KG, Williams LFG (1977) J Electroanal Chem 77:1–20

    Article  CAS  Google Scholar 

  6. Kordesch K (1962) US Patent 3,042,732, issued on July 3, 1962

  7. Shin W, Lee J, Kim Y, Steinfink H, Heller A (2005) J Am Chem Soc 127:14590–14591

    Article  PubMed  CAS  Google Scholar 

  8. Whitaker A (1975) Acta Crystallogr B31:2026–2035

    CAS  Google Scholar 

  9. Whitaker A (1978) Acta Crystallogr B34:2385–2386

    CAS  Google Scholar 

  10. Feldman B, Liu Z, Mao F, Heller A (2005) US Patent Application 20050173245, published on August 11, 2005

  11. Mano N, Kim H-H, Zhang Y, Heller A (2002) J Am Chem Soc 124:6480–6486

    Article  PubMed  CAS  Google Scholar 

  12. Hubbell JA, Kornfield JA, Tae G (2005) US Patent Application 2000559984, published on April 26, 2000

  13. Mano N, Mao F, Heller A (2002) J Am Chem Soc 124:12962–12963

    Article  PubMed  CAS  Google Scholar 

  14. Mao F, Mano N, Heller A (2003) J Am Chem Soc 125:4951–4957

    Article  PubMed  CAS  Google Scholar 

  15. Mano N, Mao F, Heller A (2004) ChemBioChem 5:1703–1705

    Article  PubMed  CAS  Google Scholar 

  16. Mano N, Mao F, Heller A (2005) J Electroanal Chem 574:347–357

    Article  CAS  Google Scholar 

  17. Mano N, Mao F, Heller A (2003) J Am Chem Soc 125:6588–6594

    Article  PubMed  CAS  Google Scholar 

  18. Kang C, Shin H, Zhang Y-C, Heller A (2004) Bioelectrochemistry 65:83–88

    Article  PubMed  CAS  Google Scholar 

  19. Kang C, Shin H, Heller A (2006) Bioelectrochemistry 68:22–26

    Article  PubMed  CAS  Google Scholar 

  20. Chen T, Barton SC, Binyamin G, Gao Z, Zhang Y, Kim H-H, Heller A (2001) J Am Chem Soc 123:8630–8631

    Article  PubMed  CAS  Google Scholar 

  21. Mano N, Fernandez Jose L, Kim Y, Shin W, Bard Allen J, Heller A (2003) J Am Chem Soc 125:15290–15291

    Article  PubMed  CAS  Google Scholar 

  22. Fernandez JL, Mano N, Heller A, Bard AJ (2004) Angew Chem Int Edit 43:6355–6357

    Article  CAS  Google Scholar 

  23. Binyamin G, Chen T, Heller A (2001) J Electroanal Chem 500:604–611

    Article  CAS  Google Scholar 

  24. Mano N, Mao F, Heller A (2004) Chem Commun 2116–2117

  25. Mano N, Kim H-H, Heller A (2002) J Phys Chem B 106:8842–8848

    Article  CAS  Google Scholar 

  26. Heller A (2004) Phys Chem Chem Phys 6:209–216

    Article  CAS  Google Scholar 

  27. Heller A (2005) AIChE J 51:1054–1066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The writing of this review was supported in part by the Welch Foundation and the U.S. Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Heller.

Additional information

Part of the material reviewed was included in the authors lecture on the occasion of his receipt of the Fransenius Gold Medal and Prize of the Gesellschaft Deutscher Chemiker at ANAKON in Regensburg, Germany, on February 17, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, A. Potentially implantable miniature batteries. Anal Bioanal Chem 385, 469–473 (2006). https://doi.org/10.1007/s00216-006-0326-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0326-4

Keywords

Navigation