Skip to main content

Advertisement

Log in

Emerging trends in bioenergy harvesters for chronic powered implants

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

The widening gap between the short battery life (<8 years) and patients’ life expectancy (20 years) is a growing concern for long-term implantable devices and adds to outpatient costs. This gap coupled with significant advancements in circuit, device design, and lowered power consumption (<1 mW) has refueled the interest in implantable energy harvesters.

As the complexity of implantable devices is increasing, the size and power requirements of implantable devices have shrunk by more than double over the past few decades. However, the functionality or lifespan of the devices is often found to be limited due to shortage of power. With more than 50% of the device size being occupied by the battery alone, longevity of such implantable devices has garnered huge concern over the years. Fueled by the demand of additional biosensors coupled to such devices, implantable energy harvesters, capable of harvesting the body’s chemical, thermal, or mechanical energy over a long period of time, have gained tremendous popularity. Among these technologies, implantable glucose fuel cells provide a promising method to generate a small yet continuous supply of power. Implantable fuel cells tap into the available free blood glucose to generate electricity. With the trend moving toward the use of semiconductor technologies for glucose-based fuel cells, fabrication of reliable and effective technology is within feasible limits. Realization of such implantable power sources can shift the burden from commonly used lithium-ion batteries by utilizing physiological resources. The present review focuses on recent developments on abiotic glucose fuel cell for bioenergy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table 1.
Figure 2.
Table 2.
Figure 3.
Figure 4.
Figure 5.
Table 3.
Table 4.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. Bruce J.: Implantable Medical Devices Market—U.S. Industry Analysis, Size, Share, Trends, Growth And Forecast 2012–2018 (2013) [cited 2014 September 11]; Available from: http://www.academia.edu/7691398/Implantable_Medical_Devices_Market_-_U.S._Industry_Analysis_Size_Share_Trends_Growth_And_Forecast_2012_-_2018.

    Google Scholar 

  2. Asbach S., Olschewski M., Faber T.S., Zehender M., Bode C., and Brunner M.: Mortality in patients with atrial fibrillation has significantly decreased during the last three decades: 35 years of follow-up in 1627 pacemaker patients. Europace 10(4), 391–394 (2008).

    Google Scholar 

  3. Drug Delivery Device Market to 2017-Metered Dose Inhalers and Infusion Pumps to be Key Revenue Generators Sepetmber 30, 2011 [cited 2014 September 11]; Available from: http://www.marketresearch.com/GBI-Research-v3759/Drug-Delivery-Device-Metered-Dose-6623023/.

  4. Potkay J.: Long term, implantable blood pressure monitoring systems. Biomed. Microdevices 10(3), 379–392 (2008).

    Google Scholar 

  5. Li P-Y., Givrad T.K., Sheybani R., Holschneider D.P., Maarek J.M.I., and Meng E.: A low power, on demand electrothermal valve for wireless drug delivery applications. Lab Chip 10(1), 101–110 (2010).

    CAS  Google Scholar 

  6. Salam M., Sawan M., and Nguyen D.: Low-power implantable device for onset detection and subsequent treatment of epileptic seizures: A review. J. Healthc. Eng. 1(2), 169–184 (2010).

    Google Scholar 

  7. Sarpeshkar R., Baker M., Salthouse C., Sit J.J., Turicchia L., and Zhak S.: An analog bionic ear processor with zero-crossing detection. In Proceedings of the IEEE International Solid State Circuits Conference (ISSCC), San Francisco, CA, 2005.

    Google Scholar 

  8. Weiland J.D., Liu W., and Humayun M.S.: Retinal prosthesis. Annu. Rev. Biomed. Eng. 7(1), 361–401 (2005).

    CAS  Google Scholar 

  9. Sanders G.D., Hlatky M.A., and Owens D.K.: Cost-effectiveness of implantable cardioverter–defibrillators. N. Engl. J. Med. 353(14), 1471–1480 (2005).

    CAS  Google Scholar 

  10. Maisel W.H.: Pacemaker and ICD generator reliability. JAMA, J. Am. Med. Assoc. 295(16), 1929–1934 (2006).

    CAS  Google Scholar 

  11. Huegl B., Bruns H.J., Unterberg-Buchwald C., Grosse A., Stegemann B., Lauer B., and Gasparini M.: Atrial fibrillation burden during the post-implant period after CRT using device-based diagnostics. J. Cardiovasc. Electrophysiol. 17(8), 813–817 (2006).

    Google Scholar 

  12. Sanders R.S., Paul P.J., and Prutchi D.: Implantable cardiac stimulation device with warning system and conductive suture point, Intermedics, Inc., US Patent No. 5609615, 1997.

    Google Scholar 

  13. Helland J.R: Implantable myocardial stimulation lead with sensors thereon, Pacesetter, Inc., US Patent No. 5423883, 1995.

    Google Scholar 

  14. Stotts L.J., Paul P.J., and Prutchi D.: Implantable cardiac stimulation device with warning system having automatic regulation of stimulation, Intermedics, Inc., US Patent No. 5609614, 1997.

    Google Scholar 

  15. Kassab G.S., Svendsen M., Combs W., Choy J.S., Berbari E.J., and Navia J.A.: A transatrial pericardial access: Lead placement as proof of concept. Am. J. Physiol. Heart Circ. Physiol. 298(1), H287–H293 (2010).

    CAS  Google Scholar 

  16. Kreysa G., Sell D., and Kramer P.: Bioelectrochemical fuel-cells. Ber. Bunsen-Ges.-Phys. Chem. Chem. Phys. 94(9), 1042–1045 (1990).

    CAS  Google Scholar 

  17. Rao J.R., Richter G.J., Von Sturm F., and Weidlich E.: Performance of glucose electrodes and characteristics of different biofuel cell constructions. Bioelectrochem. Bioenerg. 3(1), 139–150 (1976).

    CAS  Google Scholar 

  18. Mele M.F.L.D., Cardos M.J., and Videla H.A.: A biofuel cell as a bioelectrochemical sensor of glucose-oxidation. An. Asoc. Quim. Argent. 67(4), 125–138 (1979).

    Google Scholar 

  19. Weidlich E., Richter G., Sturm F.V., and Rao J.R.: Animal-experiments with bio-galvanic and bio-fuel cells. Biomater., Med. Devices, Artif. Organs 4(3–4), 277–306 (1976).

    CAS  Google Scholar 

  20. Präuer H.W., Wirtzfeld A., Lampadius M., Himmler C., and Werber K.: Lithium-powered cardiac-pacemakers. Med. Klin. 72(44), 1885–1891 (1977).

    Google Scholar 

  21. Laser D.J. and Santiago J.G.: A review of micropumps. J. Micromech. Microeng. 14(6), R35 (2004).

    Google Scholar 

  22. Evans A.T., Park J.M., Chiravuri S., and Gianchandani Y.B.: A low power, microvalve regulated architecture for drug delivery systems. Biomed. Microdevices 12(1), 159–168 (2009).

    Google Scholar 

  23. Tijero M., Gabriel G., Caro J., Altuna A., Hernández R., Villa R., Berganzo J., Blanco F.J., Salido R., and Fernández L.J.: SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron. 24(8), 2410–2416 (2009).

    CAS  Google Scholar 

  24. Silveira P.G., Miller C.W.T., Mendes R.F., and Galego G.N.: Correlation between intrasac pressure measurements of a pressure sensor and an angiographic catheter during endovascular repair of abdominal aortic aneurysm. Clinics 63(1), 59–66 (2008).

    Google Scholar 

  25. Reichelt S., Fiala J., Werber A., Förster K., Heilmann C., Klemm R., and Zappe H.: Development of an implantable pulse oximeter. IEEE Trans. Biomed. Eng. 55(2), 581–588 (2008).

    Google Scholar 

  26. Schlierf R., Horst U., Ruhl M., Schmitz-Rode T., Mokwa W., and Schnakenberg U.: A fast telemetric pressure and temperature sensor system for medical applications. J. Micromech. Microeng. 17(7), S98–S102 (2007).

    Google Scholar 

  27. Cong P., Young D.J., and Ko W.H.: Novel long-term implantable blood pressure monitoring system. In Proceedings of the IEEE Sensors 2004, Vols. 1–3, Rocha D., Sarro P.M., and Vellekoop M.J. eds.; IEEE: New York, 2004; pp. 1359–1362.

    Google Scholar 

  28. Arzbaecher R., Song Z., Burke M., and Jenkins J.: Subcutaneous sensor for cardiac arrest or acute ischemia. Circulation 110(17), 1097 (2004).

    Google Scholar 

  29. Kjellström B., Linde C., Bennet T., Ohlsson Å, and Ryden L.: Six years follow-up of an implanted SvO(2) sensor in the right ventricle. Eur. J. Heart Failure 6(5), 627–634 (2004).

    Google Scholar 

  30. Chau H.L. and Wise K.D.: An ultraminiature solid-state pressure sensor for a cardiovascular catheter. IEEE Trans. Electron Devices 35(12), 2355–2362 (1988).

    Google Scholar 

  31. Najafi N. and Ludomirsky A.: Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications. Biomed. Microdevices 6(1), 61–65 (2004).

    Google Scholar 

  32. Lanmüller H., Bijak M., Mayr W., Rafolt D., Sauermann S., and Thoma H.: Useful applications and limits of battery powered implants in functional electrical stimulations. Artif. Organs 21, 210–212 (1997).

    Google Scholar 

  33. Shill H.A.: Reliability in deep brain stimulation. IEEE Trans. Device Mater. Reliab. 5(3), 445–448 (2005).

    Google Scholar 

  34. Signorelli R.: High energy and power density nanotube-enhanced ultracapacitor design, modeling, testing, and predicted performance, MIT, Department of Electrical Engineering and Computer Science, 2009.

    Google Scholar 

  35. Parsonnet V. and Manhardt M.: Permanent pacing of the heart: 1952 to 1976. Am. J. Cardiol. 39(2), 250–256 (1977).

    CAS  Google Scholar 

  36. Parsonnet V., Myers G.H., Gilbert L., and Zucker I.R.: Clinical experience with nuclear pacemakers. Surgery 78(6), 776–786 (1975).

    CAS  Google Scholar 

  37. Laurens P.: Nuclear-powered pacemakers: An eight-year clinical experience. Pacing Clin. Electrophysiol. 2(3), 356–360 (1979).

    CAS  Google Scholar 

  38. Foster K. and Adair E.: Modeling thermal responses in human subjects following extended exposure to radiofrequency energy. Biomed. Eng. Online 3(4), 1–7 (2004).

    Google Scholar 

  39. Tang Q., Tummala N., Gupta S.K.S., and Schwiebert L.: Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Trans. Biomed. Eng. 52(7), 1285–1294 (2005).

    Google Scholar 

  40. Goto H., Sugiura T., Harada Y., and Kazui T.: Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med. Biol. Eng. Comput. 37(3), 377–380 (1999).

    CAS  Google Scholar 

  41. Starek P., White D.L., and Lillehei C.W.: Intracardiac pressure changes utilized to energize a piezoelectric powered cardiac pacemaker. Trans. - Am. Soc. Artif. Intern. Organs 16, 180–182 (1970).

    CAS  Google Scholar 

  42. Roberts B.: Capturing grid power. IEEE Power Energ. Mag. 7(4), 32–41 (2009).

    Google Scholar 

  43. Thounthong P., Chunkag V., Sethakul P., Davat B., and Hinaje M.: Comparative study of fuel-cell vehicle hybridization with battery or supercapacitor storage device. IEEE Trans. Veh. Technol. 58(8), 3892–3904 (2009).

    Google Scholar 

  44. Chandrakasan A.P., Verma N., and Daly D.C.: Ultralow-power electronics for biomedical applications. Annu. Rev. Biomed. Eng. 10, 247–274 (2008).

    CAS  Google Scholar 

  45. Holmes C.F.: Electrochemical power sources and the treatment of human illness. J. Electrochem. Soc. Interface 12, 26–29 (2003).

    CAS  Google Scholar 

  46. Linden D. and Reddy T.B.: Handbook of Batteries, 3rd ed. (McGraw-Hill, New York, 2002).

    Google Scholar 

  47. Schuder J.: Powering an artificial Heart: Birth of the inductively coupled-radio frequency system in 1960. Artif. Organs 26(11), 909–915 (2002).

    Google Scholar 

  48. De Vel O.Y.: Controlled transcutaneous powering of a chronically implanted telemetry device. Biotelemetry and Patient Monitoring, 6(4), 176–185 (1978).

    Google Scholar 

  49. Smith B., Tang Z., Johnson M.W., Pourmehdi S., Gazdik M.M., Buckett J.R., and Peckham P.H.: An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans. Biomed. Eng. 45(4), 499–508 (1998).

    Google Scholar 

  50. Suzuki S.N., Katane T., and Saito O.: Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy. J. Artif. Organs 6(2), 145–148 (2003).

    Google Scholar 

  51. Goto K., Nakagawa T., Nakamura O., and Kaata S.: An implantable power supply with an optically rechargeable lithium battery. IEEE Trans. Biomed. Eng. 48(7), 830–833 (2001).

    CAS  Google Scholar 

  52. Yakovlev A., Kim S., and Poon A.: Implantable biomedical devices: Wireless powering and communication. IEEE Comm. Mag. 50(4), 152–159 (2012).

    Google Scholar 

  53. Tang Q., Tummala N., Gupta S.K.S., and Schwiebert L.: Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Trans. Biomed. Eng. 52(7), 1285–1294 (2005).

    Google Scholar 

  54. Watkins C., Shen B., and Venkatasubramanian R.: Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors. In IEEE 24th International Conference on Thermoelectrics, Clemson, SC, 2005; pp. 265–267.

    Google Scholar 

  55. Goto H., Sugiura T., Harada Y., and Kazui T.: Feasibility of using the automatic generating system for quartz watches as a leadless peacemaker power source. Med. Biol. Eng. Comput. 37(3), 377–380 (1999).

    CAS  Google Scholar 

  56. Kaster R.L., Lillehei C.W., and Starek P.J.: The Lillehei-Kaster pivoting disc aortic prosthesis and a comparative study of its pulsatile flow characteristics with four other prostheses. Trans. - Am. Soc. Artif. Intern. Organs 16(1), 233–243 (1970).

    CAS  Google Scholar 

  57. Wang Z.L. and Song J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006).

    CAS  Google Scholar 

  58. Desai A.V. and Haque M.A.: Mechanical properties of ZnO nanowires. Sens. Actuators, A 134(1), 169–176 (2007).

    CAS  Google Scholar 

  59. Fang F., Zhang M.Z., and Yang W.: Strain rate mediated microstructure evolution for extruded poly(vinylidene fluoride) polymer films under uniaxial tension. J. Appl. Polym. Sci. 103(3), 1786–1790 (2007).

    CAS  Google Scholar 

  60. Nalwa H.S. ed.: Ferroelectric Polymers: Chemistry, Physics and Applications (Marcel Dekker, New York, 1995).

    Google Scholar 

  61. Agren M.S.: Influence of 2 vehicles for zinc-oxide on zinc-absorption through intact skin and wounds. Acta Derm.-Venereol. 71(2), 153–156 (1991).

    CAS  Google Scholar 

  62. Wang Z.L. and Song J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006).

    CAS  Google Scholar 

  63. Willner I.: Biomaterials for sensors, fuel cells, and circuitry. Science 298(5602), 2407–2408 (2002).

    CAS  Google Scholar 

  64. Bruck S.D. and Mueller E.P.: Materials aspects of implantable cardiac-pacemaker leads. Med. Prog. Technol. 13(3), 149–160 (1988).

    CAS  Google Scholar 

  65. Olsen W.: Ph.D. Medtronic. Personal communication.

  66. Ramsay M.J. and Clark W.W.: Piezoelectric energy harvesting for bio MEMS applications. Smart Struct. Mater.Ind. 4322, 429–438 (2001).

    Google Scholar 

  67. Fourie D.: Shoe-mounted PVDF piezoelectric transducer for energy harvesting. MIT URJ 19, (2010).

  68. Avraham R.: The Circulatory System (Chelsea House Publishers, Philadelphia, PA, 2000).

    Google Scholar 

  69. Hausler E. and Stein L.: Implantable physiological power supply with PVDF film. Ferroelectrics 60, 277–282 (1984).

    Google Scholar 

  70. Hausler E. and Stein L.: Hydromechanical and physiological mechanical-to-electrical power converter with pvdf film. Ferroelectrics 75(3), 363–369 (1987).

    Google Scholar 

  71. Starner T.: Human-powered wearable computing. IBM Syst. J. 35(3–4), 618–629 (1996).

    Google Scholar 

  72. Lovinger A.J.: Ferroelectric polymers. Science 220(4602), 1115–1121 (1983).

    CAS  Google Scholar 

  73. Chang C.E., Chang C., Tran V.H., Wang J., Fuh Y.K., and Lin L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010).

    CAS  Google Scholar 

  74. Turner A.P.F., Aston W.J., Higgins I.J., Davis G., and Hill H.A.O.: Applied aspects of bioelectrochemistry: Fuel-cells, sensors, and bioorganic synthesis. Biotechnology and Bioengineering 12, 401–412 (1982).

    CAS  Google Scholar 

  75. Akiba T.H.P.B., Bennetto H.P., Stirling J.L., and Tanaka K.: Electricity production from alkalophilic organisms. Biotechnol. Lett. 9(9), 611–616 (1987).

    CAS  Google Scholar 

  76. Katz E., Buckmann A.F., and Willner I.: Self-powered enzyme-based biosensors. J. Am. Chem. Soc. 123(43), 10752–10753 (2001).

    CAS  Google Scholar 

  77. Katz E. and Willner I.: A biofuel cell with electrochemically switchable and tunable power output. J. Am. Chem. Soc. 125(22), 6803–6813 (2003).

    CAS  Google Scholar 

  78. Barton S.C. and Atanassov P.: Enzymatic biofuel cells for implantable and micro-scale devices. Abstr. Pap. Am. Chem. Soc. 228, 004-FUEL (2004).

  79. Davis F. and Higson S.P.: Biofuel cells—recent advances and applications. Biosens. Bioelectron. 22(7), 1224–1235 (2007).

    CAS  Google Scholar 

  80. Stolarczyk K., Kizling M., Majdecka D., Zelechowska K., Biernat J.F., Rogalski J., and Bilewicz R.: Biobatteries and biofuel cells with biphenylated carbon nanotubes. J. Power Sources 249, 263–269 (2014).

    CAS  Google Scholar 

  81. Miyake T., Haneda K., Nagai N., Yatagawa Y., Onami H., Yoshino S., Abe T., and Nishizawa M.: Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ. Sci. 4, 5008–5012 (2011).

    CAS  Google Scholar 

  82. Falk M., Andoralov V., Blum Z., Sotres J., Suyatin D.B., Ruzgas T., Arnebrant T., and Shleev S.: Biofuel cell as a power source for electronic contact lenses. Biosensors and Bioelectronics 37(1), 38–45 (2012).

    CAS  Google Scholar 

  83. Halamkova L., Halámek J., Bocharova V., Szczupak A., Alfonta L., and Katz E.: Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 134, 5040–5043 (2012).

    CAS  Google Scholar 

  84. Szczupak A., Halámek J., Halamkova L., Bocharova V., Alfonta L., and Katz E.: Living battery–biofuel cells operating in vivo in clams. Energy Environ. Sci. 5, 8891–8895 (2012).

    CAS  Google Scholar 

  85. Magnus Falk C.W.N.V., Babanova S., Atanassov P., and Shleev S., Biofuel cells for biomedical Applications: Colonizing the animal kingdom. ChemPhysChem 14, 2045–2058 (2013).

    Google Scholar 

  86. Rao J.R.: Bioelectrochemistry. I. Biological Redox Reactions, Milazzo M.B.G. ed.; Plenum Press: New York, 1983; pp. 283–335.

  87. Cosnier S., Le Goff A., and Holzinger M.: Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochem. Commun. 38, 19–23 (2013).

    Google Scholar 

  88. Palmore G.T.R., Bertschy H., Bergens S.H., and Whitesides G.M.: A methanol/dioxygen biofuel cell that uses NAD(+)-dependent dehydrogenases as catalysts: Application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem. 443(1), 155–161 (1998).

    CAS  Google Scholar 

  89. Palmore G.T.R. and Kim H.H.: Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J. Electroanal. Chem. 464(1), 110–117 (1999).

    CAS  Google Scholar 

  90. Katz E., Filanovsky B., and Willner I.: A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. New J. Chem. 23(5), 481–487 (1999).

    CAS  Google Scholar 

  91. Katz E., Lioubashevski O., and Willner I.: Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: Enhanced performance of biofuel cells. J. Am. Chem. Soc. 127(11), 3979–3988 (2005).

    CAS  Google Scholar 

  92. Katz E., Sheeney-Haj-Ichia L., and Willner I.: Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew. Chem., Int. Ed. 43(25), 3292–3300 (2004).

    CAS  Google Scholar 

  93. Katz E., Willner I., and Kotlyar A.B.: A non-compartmentalized glucose vertical bar O-2 biofuel cell by bioengineered electrode surfaces. J. Electroanal. Chem. 479(1), 64–68 (1999).

    CAS  Google Scholar 

  94. Willner B., Katz E., and Willner I.: Electrical contacting of redox proteins by nanotechnological means. Curr. Opin. Biotechnol. 17(6), 589–596 (2006).

    CAS  Google Scholar 

  95. Willner I., Arad G., and Katz E.: A biofuel cell based on pyrroloquinoline quinone and microperoxidase-1 monolayer-functionalized electrodes. Bioelectrochem. Bioenerg. 44(2), 209–214 (1998).

    CAS  Google Scholar 

  96. Willner I., Baron R., and Willner B.: Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens. Bioelectron. 22(9–10), 1841–1852 (2007).

    CAS  Google Scholar 

  97. Willner I., Katz E., Patolsky F., and Buckmann A.: Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-fundionalized electrodes. J. Chem. Soc., Perkin Trans. 2(8), 1817–1822 (1998).

    Google Scholar 

  98. Willner I., Yan Y.M., Willner B., and Tel-Vered R.: Integrated enzyme-based biofuel cells-a review. Fuel Cells 9(1), 7–24 (2009).

    CAS  Google Scholar 

  99. Heller A.: Miniature biofuel cells. Phys. Chem. Chem. Phys. 6(2), 209–216 (2004).

    CAS  Google Scholar 

  100. Heller A.: Electron-conducting redox hydrogels: Design, characteristics and synthesis. Curr. Opin. Chem. Biol. 10(6), 664–672 (2006).

    CAS  Google Scholar 

  101. Heller A.: Potentially implantable miniature batteries. Anal. Bioanal. Chem. 385(3), 469–473 (2006).

    CAS  Google Scholar 

  102. Kanwal A., Wang S.C., Ying Y., Cohen R., Lakshmanan S., Patlolla A., Iqbal Z., Thomas G.A., and Farrow R.C.: Substantial power density from a discrete nano-scalable biofuel cell. Electrochem. Commun. 39, 37–40 (2014).

    CAS  Google Scholar 

  103. Sharma T.: Nanoporous silica as membrane for implantable ultra-thin biofuel cells. In Power MEMS 2009, Washington DC, 2009.

    Google Scholar 

  104. Akers N.L., Moore C.M., and Minteer S.D.: Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochim. Acta 50(12), 2521–2525 (2005).

    CAS  Google Scholar 

  105. Mano N., Mao F., Shin W., Chen T., and Heller A.: A miniature biofuel cell operating at 0.78 V. Chem. Commun. 9(4), 518–519 (2003).

    Google Scholar 

  106. Liu H. and Logan B.E.: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38(14), 4040–4046 (2004).

    CAS  Google Scholar 

  107. Sharma T., Reddy A.L.M., Chandra T.S., and Ramaprabhu S.: Development of carbon nanotubes and nanofluids based microbial fuel cell. Int. J. Hydrogen Energy 33(22), 6749–6754 (2008).

    CAS  Google Scholar 

  108. Rao J.R., Richter G., Von S.F., and Weidlich E.: Biological fuel cells for implanted electronic devices. Ber. Bunsenges. Phys. Chem. (Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 77, 787–790 (1973).

    CAS  Google Scholar 

  109. Kerzenmacher S., Ducrée J., Zengerle R., and Von Stetten F.: An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance. J. Power Sources 182(1), 66–75 (2008).

    CAS  Google Scholar 

  110. Kloke A., Kerzenmacher S., Zengerle R., and von Stetten F.: Electrodeposited thin-layer electrodes for the use in potentially implantable glucose fuel cells. In Transducers. 2009, Denver, CO, USA, 2009; pp. 537–540.

    Google Scholar 

  111. Ghaffari S., Asgarpour A., Mousavi R., and Salehieh M.: Fabrication and simulation of implantable glucose bio fuel cell with gold catalyst. In IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA), 2013, IEEE: 2013; pp. 63–66.

    Google Scholar 

  112. Oncescu V. and Erickson D.: A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. J. Power Sources 196(22), 9169–9175 (2011).

    CAS  Google Scholar 

  113. Kerzenmacher S., Kräling U., Metz T., Zengerle R., and Von Stetten F.: A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability. J. Power Sources 196(3), 1264–1272 (2011).

    CAS  Google Scholar 

  114. Sharma T., Hu Y., Stoller M., Feldman M., Ruoff R.S., Ferrari M., and Zhang X.: Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells. Lab Chip 11(14), 2460–2465 (2011).

    CAS  Google Scholar 

  115. Rapoport B.I., Kedzierski J.T., and Sarpeshkar R.: A glucose fuel cell for implantable brain–machine interfaces. PLoS One 7(6), e38436 (2012).

    CAS  Google Scholar 

  116. Ishii S.I., Watanabe K., Yabuki S., Logan B.E., and Sekiguchi Y.: Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Appl. Environ. Microbiol. 74(23), 7348–7355 (2008).

    CAS  Google Scholar 

  117. Logan B.E.: Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7(5), 375–381 (2009).

    CAS  Google Scholar 

  118. Alferov S.V.: Biofuel cell anode based on the Gluconobacter oxydans bacteria cells and 2,6-dichlorophenolindophenol as an electron transport mediator. Russ. J. Electrochem. 42(4), 403–404 (2006).

    CAS  Google Scholar 

  119. Dumas C., Basseguy R., and Bergel A.: Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim. Acta 53(16), 5235–5241 (2008).

    CAS  Google Scholar 

  120. Ringeisen B.R., Henderson E., Wu P.K., Pieetron J., Ray R., Little B., and Jones-Meehan J.M.: High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40(8), 2629–2634 (2006).

    CAS  Google Scholar 

  121. Trinh N.T., Park J.H., and Kim B.W.: Increased generation of electricity in a microbial fuel cell using Geobacter sulfurreducens. Korean J. Chem. Eng. 26(3), 748–753 (2009).

    CAS  Google Scholar 

  122. Vostiar I., Ferapontova E.E., and Gorton L.: Electrical “wiring” of viable Gluconobacter oxydans cells with a flexible osmium-redox polyelectrolyte. Electrochem. Commun. 6(7), 621–626 (2004).

    CAS  Google Scholar 

  123. Wang Y.F., Tsujimura S., Cheng S.S., and Kano K.: Self-excreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes. Appl. Microbiol. Biotechnol. 76(6), 1439–1446 (2007).

    CAS  Google Scholar 

  124. Birry L., Mehta P., Jaouen F., Dodelet J.P., Guiot S.R., and Tartakovsky B.: Application of iron-based cathode catalysts in a microbial fuel cell. Electrochim. Acta 56(3), 1505–1511 (2011).

    CAS  Google Scholar 

  125. Bearinger J.P., Dugan L.C., Wu L., Hill H., Christian A.T., and Hubbell J.A.: Chemical tethering of motile bacteria to silicon surfaces. BioTechniques 46(3), 209 (2009).

    CAS  Google Scholar 

  126. Deng L.: A biofuel cell with enhanced performance by multilayer biocatalyst immobilized on highly ordered macroporous electrode. Biosens. Bioelectron. 24(2), 329–333 (2008).

    CAS  Google Scholar 

  127. Finkelstein D.A., Tender L.M., and Zeikus J.G.: Effect of electrode potential on electrode-reducing microbiota. Environ. Sci. Technol. 40(22), 6990–6995 (2006).

    CAS  Google Scholar 

  128. Liu J.L., Lowy D.A., Baumann R.G., and Tender L.M.: Influence of anode pretreatment on its microbial colonization. J. Appl. Microbiol. 102(1), 177–183 (2007).

    CAS  Google Scholar 

  129. Mohan S.V., Raghavulu S.V., and Sarma P.N.: Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosens. Bioelectron. 24(1), 41–47 (2008).

    Google Scholar 

  130. Barrière F., Ferry Y., Rochefort D., and Leech D.: Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell. Electrochem. Commun. 6(3), 237–241 (2004).

    Google Scholar 

  131. Choi Y., Wang G., Nayfeh M.H., and Yau S.T.: Electro-oxidation of organic fuels catalyzed by ultrasmall silicon nanoparticles. Appl. Phys. Lett. 93(16), 164103 (2008).

    Google Scholar 

  132. Rabaey K. and Verstraete W.: Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 23(6), 291–298 (2005).

    CAS  Google Scholar 

  133. Sharma T., Reddy A., Chandra T.S., and Ramaprabhu S.: High power density from Pt thin film electrodes based microbial fuel cell. J. Nanosci. Nanotechnol. 8(8), 4132–4134 (2008).

    CAS  Google Scholar 

  134. Wang H-Y., Bernarda A., Huang C.Y., Lee D.J., and Chang J.S.: Micro-sized microbial fuel cell: A mini-review. Bioresour. Technol. 102(1), 235–243 (2011).

    CAS  Google Scholar 

  135. Aelterman P., Rabaey K., Pham H.T., Boon N., and Verstraete W.: Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40(10), 3388–3394 (2006).

    CAS  Google Scholar 

  136. He Z., Wagner N., Minteer S.D., and Angenent L.T.: An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 40(17), 5212–5217 (2006).

    CAS  Google Scholar 

  137. Hu Z.Q.: Electricity generation by a baffle-chamber membraneless microbial fuel cell. J. Power Sources 179(1), 27–33 (2008).

    CAS  Google Scholar 

  138. Pant D., Van Bogaert G., Diels L., and Vanbroekhoven K.: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101(6), 1533–1543 (2010).

    CAS  Google Scholar 

  139. Fernández J.L., Mano N., Heller A., and Bard A.J.: Optimization of “wired” enzyme O2-electroreduction catalyst compositions by scanning electrochemical microscopy. Angew. Chem., Int. Ed. 43(46), 6355–6357 (2004).

    Google Scholar 

  140. Mano N.: A miniature membrane-less biofuel cell operating at+0.60 V under physiological conditions. Abstr. Pap. Am. Chem. Soc. 230, U1661 (2005).

    Google Scholar 

  141. Minteer S.D., Liaw B.Y., and Cooney M.J.: Enzyme-based biofuel cells. Curr. Opin. Biotechnol. 18(3), 228–234 (2007).

    CAS  Google Scholar 

  142. Kerzenmacher S., Ducrée J., Zengerle R., and Von Stetten F.: Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182(1), 1–17 (2008).

    CAS  Google Scholar 

  143. Kloke A., Biller B., Kerzenmacher S., Kräling U., Zengerle R., and von Stetten F.: A single layer biofuel cell as potential coating for implantable low power devices. In Eurosensors Proceedings, Dresden, Germany, 2008.

    Google Scholar 

  144. von Stetten F., Kerzenmacher S., Sumbharaju R., Zengerle R., and Ducrée J.: Biofuel cells as micro power generators for implantable devices. In Proceedings of the Eurosensors XX, Göteborg, Sweden, 2006.

    Google Scholar 

  145. Kerzenmacher S., Ducree J., Zengerle R., and von Stetten F: A novel fabrication route yielding self-supporting porous platinum anodes for implantable glucose fuel cells. In Proceedings of the PowerMEMS, Freiburg, Germany, 2007.

    Google Scholar 

  146. Kerzenmacher S., Sumbharaju R., Ducree J., Zengerle R., and von Stetten F.: A surface mountable glucose fuel cell for medical implants. In Transducers and Eurosensors 2007, Lyon, France, 2007.

    Google Scholar 

  147. Kerzenmacher S., Kräling U., Schroeder M., Brämer R., Zengerle R., and von Stetten F.: Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes. J. Power Sources 195(19), 6524–6531 (2010).

    CAS  Google Scholar 

  148. Kerzenmacher S., Mutschler K., Kräling U., Baumer H., Ducrée J., Zengerle R., and von Stetten F.: A complete testing environment for the automated parallel performance characterization of biofuel cells: Design, validation, and application. J. Appl. Electrochem. 39(9), 1477–1485 (2009).

    CAS  Google Scholar 

  149. von Stetten F., Kerzenmacher S., Lorenz A., Chokkalingam V., Miyakawa N., Zengerle R., and Ducree J.: A one-compartment, direct glucose fuel cell for powering long-term medical implants. In MEMS 2006, IEEE: Istanbul, Turkey, 2006; pp. 934–937.

    Google Scholar 

  150. Oliveira L.C., Silva C.N., Yoshida M.I., and Lago R.M.: The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon 42(11), 2279–2284 (2004).

    CAS  Google Scholar 

  151. Kerzenmacher S., Kräling U., Ducrée J., Zengerle R., and von Stetten F.: A binder-less glucose fuel cell with improved chemical stability intended as power supply for medical implants. In 4th European Conference of the International Federation for Medical and Biological Engineering, Springer: Antwerp, Belgium, 2009; pp. 2369–2383.

    Google Scholar 

  152. Rao J.R. and Richter G.: Implantable bioelectrochemical power sources. Naturwissenschaften 61(5), 200–206 (1974).

    CAS  Google Scholar 

  153. Ivanov I., Vidaković T.R., and Sundmacher K.: Glucose electrooxidation for biofuel cell applications. Chem. Biochem. Eng. 23(1), 77–86 (2009).

    CAS  Google Scholar 

  154. Rao J.R., Richter G.J., Luft G., and von Sturm P.: Electrochemical behavior of amino-acids and their influence on anodic-oxidation of glucose in neutral media. Biomater., Med. Devices, Artif. Organs 6(2), 127–149 (1978).

    CAS  Google Scholar 

  155. Oncescu V. and Erickson D.: High volumetric power density, non-enzymatic, glucose fuel cells. Sci. Rep. 3, 1–6 (2013).

    Google Scholar 

  156. Chen D., Sharma T., Chen Y., Fu X., and Zhang J.X.: Gold nanoparticles doped flexible PVDF-TrFE energy harvester. In 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2013, IEEE: Suzhou, China, 2013; pp. 669–672.

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation grants (ECCS 1128677, ECCS 1309686). We gratefully acknowledge the partial financial support from the Thayer School of Engineering at Dartmouth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Naik, S., Gopal, A. et al. Emerging trends in bioenergy harvesters for chronic powered implants. MRS Energy & Sustainability 2, 7 (2015). https://doi.org/10.1557/mre.2015.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2015.8

Keywords

Navigation