Skip to main content
Log in

Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP–mass spectrometry (SF-ICP–MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L−1, respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86–5.50 and 0.176–2.35 ng L−1, respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82–1.04% (RSD) was obtained for 235U/238U at low ng L−1 levels, using the FI transient signal approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pappas RS, Ting BG, Jarett JM, Paschal DC, Caudill SP, Miller DT (2002) J Anal At Spectrom 17:131–134

    Google Scholar 

  2. Gwiazda RH, Squibb K, McDiarmid M, Smith D (2004) Health Phys 86:12–18

    Google Scholar 

  3. Kerl W, Becker JS, Dietz H-J, Dannecker W (1997) Fresenius J Anal Chem 359:407–409

    Google Scholar 

  4. Krystek P, Ritsema R (2002) J Anal Bioanal Chem 374:226–229

    Article  CAS  PubMed  Google Scholar 

  5. Bandura DR, Baranov VI, Tanner SDJ (2000) Anal At Spectrom 15:921–928

    Google Scholar 

  6. Vanhaecke F, Moens L (2004) Anal Bioanal Chem 378:232–240

    Google Scholar 

  7. Stürup S (2004) Anal Bioanal Chem 378:237–282

    Google Scholar 

  8. Walczyk T (2004) Anal Bioanal Chem 378:229–231

    Google Scholar 

  9. Lober A, Karpas Z, Halicz L (1996) Anal Chim Acta 334:295–301

    Article  CAS  Google Scholar 

  10. Vanhaecke F, Stevens G, De Wannemacker G, Moens L (2003) Can J Anal Sci Spectrosc 48:251–257

    Google Scholar 

  11. Haldiman M, Baduraux M, Eastgate A, Froidevaux P, O’Donovan S, Von Gunten D, Zoller O (2001) J Anal At Spectrom 16:1364–1369

    Google Scholar 

  12. Becker JS, Burow M, Boulyga SF, Pickhardt C, Hille R, Ostapczuk P (2002) At Spectrosc 23:177–182

    Google Scholar 

  13. Al-Jundi J, Werner E, Roth P, Hollriegl V, Wendler I, Schramel P (2004) J Environ Radioact 71:61–70

    Google Scholar 

  14. TrešeI, De Wannemacker G, Quétel CR, Petrov I, Vanhaecke F, Moens L, Taylor PDP (2004) Environ Sci Technol 38:581–586

    Article  PubMed  Google Scholar 

  15. Tolmachyov SYu, Kuwabara J, Noguchi H (2004) J Radioanal Nuclear Chem 261: 125–131

    Google Scholar 

  16. Egorov OB, O’Hara MJ, Farmer III OT, Grate JW (2001) Analyst 126:1594–1601

    Google Scholar 

  17. Nelms SM, Quétel CR, Prohaska T, Vogl J, Taylor PDP (2001) J Anal At Spectrom 16:333–338

    Google Scholar 

  18. Quétel CR, Prohaska T, Hamester M, Kerl W, Taylor PDP (2000) J Anal At Spectrom 15:353–358

    Google Scholar 

  19. Ingle CP, Sharp BL, Horstwood MSA, Parrish RR, Lewis DJ (2003) J Anal At Spectrom 18:219–229

    Google Scholar 

  20. Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) J Anal At Spectrom 13: 001–1008

    Google Scholar 

  21. Horwitz EP, Chiarizia R, Dietz ML, Diamond H (1993) Anal Chim Acta 281:361–372

    Google Scholar 

  22. Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Essling AM, Graczyk D (1992) Anal Chim Acta 266:25–37

    Google Scholar 

  23. Magara M, Sakakibara T, Kurosawa S, Takahashi M, Sakurai S, Hanzawa Y, Esaka F, Watanabe K, Usuda S (2002) J Anal At Spectrom 17:1157–1160

    Google Scholar 

  24. Günter-Leopold I, Wernli B, Kopajtic Z, Günter D (2004) Anal Bioanal Chem 378:241–249

    Google Scholar 

  25. Carrión MC, Andrés JR, Rubí JAM, Emteborg H (2003) J Anal At Spectrom 18:437–443

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge CBRN Research and Technology Initiative (CRTI) and the National Sciences and Engineering Research Council of Canada (NSERC) for the financial support. We also would like to thank D. Brownell for the technical assistance and all the volunteers for their kind cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karima Benkhedda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkhedda, K., Epov, V.N. & Evans, R.D. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry. Anal Bioanal Chem 381, 1596–1603 (2005). https://doi.org/10.1007/s00216-005-3147-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3147-y

Keywords

Navigation