Skip to main content
Log in

Confirmatory determination of organochlorine pesticides in surface waters using LC/APCI/tandem mass spectrometry⋄

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A confirmatory method for the determination of organochlorine pesticides (OCPs) and their metabolites (endrin, α-endosulfan, β-endosulfan, endosulfan sulfate, heptachlor, heptachlor epoxide, 2,4′-DDD, 4,4′-DDD, 2,4′-DDE 4,4′-DDE, 2,4′-DDT, and 4,4′-DDT) in surface waters using liquid chromatography /APCI/tandem mass spectrometry has been developed. Chromatographic separation was carried out on a ChromSpher 5 Pesticide column using a gradient elution with mobile phase 1mM ammonium acetate-acetonitrile. Endrin, α-endosulfan, β-endosulfan , endosulfan sulfate, heptachlor and heptachlor epoxide were determined in the negative ionization mode, while the rest compounds in positive ionization mode. For the identification of the analytes, two multireaction monitoring transitions were selected per compounds except for the heptachlor which selected ion monitoring was used. The linearity of the optimized method ranges after SPE concentration, from 0.009 to 30.60 μgL−1 with correlation coefficients greater than 0.99. The method recovery values varied from 72 to 119 % for the different fortification levels . The developed method was successfully applied to determine OCPs and their metabolites in surface water samples collected near paddy fields in growing season of rice, at year 2005 in Pathumthani province, Thailand. Endosulfan sulfate was detected in five out of seven samples and three of them could be quantitated in the range of 0.31to 0.50 μgL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Santos FJ, Galceran MT (2002) Trends Anal Chem 21:672–685

    Article  CAS  Google Scholar 

  2. Murayama H, Moriyama N, Mitobe H, Mukai H, Takase Y, Shimizu K, Kitayama Y (2003) Chemosphere 52:825–833

    Article  PubMed  CAS  Google Scholar 

  3. Shen L, Wania F, Lei YD, Teixeira C, Muir DCG, Bidleman TF (2005) Environ Sci Technol 39:409–420

    Article  PubMed  CAS  Google Scholar 

  4. Fu S, Chu S, Xu X (2001) Bull Environ Contam Toxicol 66:171–177

    Article  PubMed  CAS  Google Scholar 

  5. Nerín C, Battle R, Sartaguda M, Pedrocchi C (2002) Anal Chim Acta 464:303–312

    Article  Google Scholar 

  6. Columé A, Cárdenas S, Gallego, Valcárcel M (2001) Talanta 54:943–951

    Article  Google Scholar 

  7. Aguilar C, Borrull F, Marcé RM (1997) J Chromatogr A 771:221–231

    Article  CAS  Google Scholar 

  8. Jackson GP, Andrews ARJ (1998) Analyst 123:1085–1090

    Article  CAS  Google Scholar 

  9. Magdic S, Pawliszyn JB (1996) J Chromatogr A 723:111–122

    Article  PubMed  CAS  Google Scholar 

  10. Li H-P, Li G-C, Jen J-F (2003) J Chromtogr A 1012:129–137

    Article  CAS  Google Scholar 

  11. Dong C, Zeng Z, Yang M (2005) Water Research 39:4204–4210

    Article  PubMed  CAS  Google Scholar 

  12. Keinhuis PGM, Geerdink RB (2000) Trends Anal Chem 19:460–474

    Article  Google Scholar 

  13. Wang D, Atkinson W, Hoover-Miller A, Li QX (2005) Rapid Commun Mass Spectrom 19:1815–1821

    Article  PubMed  CAS  Google Scholar 

  14. Patel K, Fussel RJ, Hetmanski, Gooddall DM, Keely BJ (2005) J Chromatoger A 1068:289–296

    Article  CAS  Google Scholar 

  15. Borb da Cunha AC, López de Alda MJ, Barceló D, Pizzolato TM, Henrique Z dos Santos J (2004) Anal Bioanal Chem 378:940–954

    Article  Google Scholar 

  16. Chiron S, Dupas S, Scribe P, Barceló D (1994) J Chromatogr A 665:295–305

    Article  CAS  Google Scholar 

  17. Slobodník J, Hogenboom AC, Louter AJH, Brinkman UATh (1996) J Chromatogr A 730:353–371

    Article  Google Scholar 

  18. Concha-Graña E, Turnes-Carou MI, Muniategui-Lorenzo S, López-Mahía P, Fernández-Fernández E, Prad-Rodríguez D (2001) Chromatographia 54:5–1–506

    Article  Google Scholar 

  19. Sutthivaiyakit P, Achatz S, Lintelmann J, Aungpradit T, Charnwirat R, Chumanee S, Kettrup A (2005) Anal Bioanal Chem 381:268–276

    Article  PubMed  CAS  Google Scholar 

  20. Lintelmann J, Fischer K, Karg E, Schroeppel A (2005) Anal Bioanal Chem 381:508–519

    Article  PubMed  CAS  Google Scholar 

  21. Stemmler EA, Hites RA (1985) Anal Chem 57:684–692

    Article  CAS  Google Scholar 

  22. Hernádez F, Sancho JV, Pazo O, Pitarch E (2001) J Chromatogr A 939:1–11

    Article  Google Scholar 

  23. Council of the European Communities (1998) Directive 98/83/EC, Off J Eur Commun L 330/32

  24. Mangani F, Maione M, Palma P. Analysis of Organochlorinated Pesticides in Water. In Nollet L M L, ed. Handbook of Water Analysis. New York: Marcel Dekker 517–536

  25. Kruwal K, Sacher F, Werner A, Mueller J, Knepper TP (2005) Sci Total Environ 340:57–70

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Postgraduate Education and Research Program in Chemistry (PERCH) and Kasetsart University is gratefully acknowledged. The authors thank Professor David L. Sedlak for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sutthivaiyakit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chusaksri, S., Sutthivaiyakit, S. & Sutthivaiyakit, P. Confirmatory determination of organochlorine pesticides in surface waters using LC/APCI/tandem mass spectrometry⋄. Anal Bioanal Chem 384, 1236–1245 (2006). https://doi.org/10.1007/s00216-005-0248-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0248-6

Keywords

Navigation