Skip to main content
Log in

Use of the three-phase model and headspace analysis for the facile determination of all partition/association constants for highly volatile solute–cyclodextrin–water systems

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A versatile method for measuring the partition coefficients of volatile analytes with an aqueous pseudophase using headspace gas chromatography is reported. A “three-phase” model accounts for all equilibria present in the system, including the partitioning of the analyte in the gas and aqueous phases to the pseudophase. This method is applicable to a wide variety of volatile analytes and aqueous pseudophases, providing that sufficient pseudophase may be used to reduce the analyte partial pressure. Generally, the method offers good reproducibility and high sensitivity. The associations of five volatile analytes (hydrogen sulfide, methanethiol, dimethyl sulfide, dichloromethane, and ethyl ether) with various cyclodextrins were examined. All analytes were found to partition preferentially to the cyclodextrin pseudophase compared to the aqueous phase. In addition, several analyte–cyclodextrin combinations formed insoluble complexes in solution that enhanced the extraction of the analyte from the gas and aqueous phases. Derivatization of the cyclodextrins generally decreased the extent of analyte–cyclodextrin interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Christian SD, Scamehorn JF (eds) (1995) Solubilization in surfactant aggregates. In: Surfactant science series, vol 55. Marcel Dekker, New York

  2. Miller CA, Qutubuddin S (1986) Enhanced oil recovery using microemulsions. In: Elicke HF, Prafitt G (eds) Interfacial phenomenon in nonaqueous media. Marcel Dekker, New York

    Google Scholar 

  3. Vane LM, Giroux EL (2000) J Chem Eng Data 45:38–47

    Article  CAS  Google Scholar 

  4. Kashiyama N, Boving TB (2004) Environ Sci Technol 38(16):4439–4444

    Article  PubMed  CAS  Google Scholar 

  5. Winters LJ, Grunwald EJ (1965) Am Chem Soc 87(20):4608–4611

    Article  CAS  Google Scholar 

  6. Kant A, Linforth RST, Hort J, Taylor AJ (2004) J Agric Food Chem 52:2028–2035

    Article  PubMed  CAS  Google Scholar 

  7. Goubet I, Dahout C, Sémon E, Guichard E, Le Quéré JL, Voilley A (2001) J Agric Food Chem 49:5916–5922

    Article  PubMed  CAS  Google Scholar 

  8. Reineccius TA, Reineccius GA, Peppard TL (2005) J Agric Food Chem 53(2):388–392

    Article  PubMed  CAS  Google Scholar 

  9. Qu Q, Tucker E, Christian SD (2003) J Incl Phenom Macrocycl Chem 45(1–2):83–89

    Article  CAS  Google Scholar 

  10. Uekama K, Irie T (1996) Pharmaceutical use of cyclodextrins in various drug formulations. In: Cyclodextrins (Comprehensive supramolecular chemistry, vol 3). Elsevier, New York

    Google Scholar 

  11. Ueda H, Nagai T (1996) Aspects of drug formulation with cyclodextrins. In: Cyclodextrins (Comprehensive supramolecular chemistry, vol 3). Elsevier, New York

    Google Scholar 

  12. Armspach D, Gattuso G, Königer R, Stoddart JF (1999) Cyclodextrins. In: Bioorganic chemistry: carbohydrates. Oxford University Press, New York

    Google Scholar 

  13. Hai M, Han B (2003) J Colloid Interf Sci 267:173–177

    Google Scholar 

  14. Hussam A, Basu SC, Hixon M, Olumee Z (1995) Anal Chem 67:1459–1464

    Article  CAS  Google Scholar 

  15. Armstrong DW, Nome F (1981) Anal Chem 53:1662–1666

    Article  CAS  Google Scholar 

  16. Armstrong DW, Stine GY (1983) J Am Chem Soc 105:2962–2964

    Article  CAS  Google Scholar 

  17. Janini GM, Attari SA (1983) Anal Chem 55:659–661

    Article  CAS  Google Scholar 

  18. Menges RA, Armstrong DW (1991) Anal Chim Acta 255:157–162

    Article  CAS  Google Scholar 

  19. Rundlett KL, Armstrong DW (1995) Anal Chem 34:2088–2095

    Article  Google Scholar 

  20. Armstrong DW (1985) Sep Purif Methods 14:213–304

    Article  CAS  Google Scholar 

  21. Nishi H, Fukuyama T, Terabe S (1991) J Chromatogr 553:503–516

    Article  CAS  Google Scholar 

  22. Conder JR, Young CL (1979) Physicochemical measurements by gas chromatography. Wiley, New York

    Google Scholar 

  23. Laub RJ, Pecsok RL (1978) Physicochemical applications of gas chromatography. Wiley, New York

    Google Scholar 

  24. Loesche WJ, Kazor C (2002) Periodontology 2000 28:256–279

    Article  PubMed  Google Scholar 

  25. Sanz M, Roldán S, Herrera D (2001) J Contemp Dent Pract 2:1–13

    CAS  Google Scholar 

  26. Smet E, Van Langenhove H (1998) Biodegredation 9:273–284

    Article  CAS  Google Scholar 

  27. Carroll JJ, Mather AE (1989) Geochim Cosmochim Acta 53:1163–1170

    Article  CAS  Google Scholar 

  28. Hine J, Weimar RD Jr (1965) J Am Chem Soc 87:3387–3396

    Article  CAS  Google Scholar 

  29. Dacey JWH, Wakeham SG, Howes BL (1984) Geophys Res Lett 11:991–994

    CAS  Google Scholar 

  30. Wright DA, Sandler SI, DeVoll D (1992) Environ Sci Technol 26:1828–1831

    Article  CAS  Google Scholar 

  31. Nielson F, Olson E, Fredenslund A (1994) Environ Sci Technol 28:2133–2138

    Article  Google Scholar 

  32. Szejtli J (1996) Chemistry, physical and biological properties of cyclodextrins. In: Cyclodextrins (Comprehensive supramolecular chemistry, vol 3). Elsevier, New York

    Google Scholar 

  33. Sanemasa I, Wu J, Toda K (1997) Bull Chem Soc Jpn 70:365–369

    Article  CAS  Google Scholar 

  34. Liu Y, You C (2001) J Phys Org Chem 14:11–16

    Article  CAS  Google Scholar 

  35. Saenger W, Steiner T (1998) Acta Crystallogr A54:798–805

    CAS  Google Scholar 

  36. Szejtli J (1982) Cyclodextrins and their inclusion complexes. Akademai Kiado, Budapest

    Google Scholar 

  37. Armstrong DW, Nome F, Spino LA, Golden TD (1986) J Am Chem Soc 108:1418–1421

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are extended to GlaxoSmithKline for their generous funding and support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lantz, A.W., Wetterer, S.M. & Armstrong, D.W. Use of the three-phase model and headspace analysis for the facile determination of all partition/association constants for highly volatile solute–cyclodextrin–water systems. Anal Bioanal Chem 383, 160–166 (2005). https://doi.org/10.1007/s00216-005-0030-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0030-9

Keywords

Navigation